Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777598

RESUMO

Magnetogenetics was developed to remotely control genetically targeted neurons. A variant of magnetogenetics uses magnetic fields to activate transient receptor potential vanilloid (TRPV) channels when coupled with ferritin. Stimulation with static or radiofrequency (RF) magnetic fields of neurons expressing these channels induces Ca2+ transients and modulates behavior. However, the validity of ferritin-based magnetogenetics has been questioned due to controversies surrounding the underlying mechanisms and deficits in reproducibility. Here, we validated the magnetogenetic approach FeRIC using electrophysiological and imaging techniques. Previously, interference from RF stimulation rendered patch-clamp recordings inaccessible for magnetogenetics. We solved this limitation for FeRIC, and we studied the bioelectrical properties of neurons expressing TRPV4 (non-selective cation channel) and TMEM16A (chloride permeable channel) coupled to ferritin (FeRIC channels) under RF stimulation. We used cultured neurons obtained from rat hippocampus of either sex. We show that RF decreases the membrane resistance and depolarizes the membrane potential in neurons expressing TRPV4FeRIC RF does not directly trigger action potential firing but increases the neuronal basal spiking frequency. In neurons expressing TMEM16AFeRIC, RF decreases the membrane resistance, hyperpolarizes the membrane potential, and decreases the spiking frequency. Additionally, we corroborated the previously described biochemical mechanism responsible for RF-induced activation of ferritin-coupled ion channels. We solved an enduring problem for ferritin-based magnetogenetics, obtaining direct electrophysiological evidence of RF-induced activation of ferritin-coupled ion channels. We found that RF does not yield instantaneous changes in neuronal membrane potentials. Instead, RF produces responses that are long-lasting and moderate, but effective in controlling the bioelectrical properties of neurons.Significance statement Cell-specific and non-invasive stimulation can be a powerful tool for modulating neuronal circuits and functions. Magnetogenetic techniques that are fully genetically encoded provide such tools. However, there have been significant controversies surrounding the efficacy and underlying mechanisms of magnetogenetics. Here, we demonstrate that by employing a fully genetically encoded magnetogenetic approach called FeRIC, we can modulate neuronal voltage, inducing either depolarization or hyperpolarization through the activation of ion channels with magnetic fields; we validate this modulation mechanism with the gold-standard patch-clamp technique. We further discover that this neuronal modulation is not achieved by instantaneously triggering action potentials as previously assumed, but by modulating neuronal excitability.

3.
Cell Stem Cell ; 31(4): 467-483.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38537631

RESUMO

Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.


Assuntos
Lesões Encefálicas , Perfuração Intestinal , Transtornos Motores , Nascimento Prematuro , Lactente , Feminino , Recém-Nascido , Humanos , Animais , Camundongos , Recém-Nascido Prematuro , Perfuração Intestinal/complicações , Ventrículos Laterais , Nicho de Células-Tronco , Transtornos Motores/complicações , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem
5.
Cell Stem Cell ; 30(8): 1054-1071.e8, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541211

RESUMO

White matter injuries (WMIs) are the leading cause of neurologic impairment in infants born premature. There are no treatment options available. The most common forms of WMIs in infants occur prior to the onset of normal myelination, making its pathophysiology distinctive, thus requiring a tailored approach to treatment. Neonates present a unique opportunity to repair WMIs due to a transient abundance of neural stem/progenitor cells (NSPCs) present in the germinal matrix with oligodendrogenic potential. We identified an endogenous oxysterol, 20-αHydroxycholesterol (20HC), in human maternal breast milk that induces oligodendrogenesis through a sonic hedgehog (shh), Gli-dependent mechanism. Following WMI in neonatal mice, injection of 20HC induced subventricular zone-derived oligodendrogenesis and improved myelination in the periventricular white matter, resulting in improved motor outcomes. Targeting the oligodendrogenic potential of postnatal NSPCs in neonates with WMIs may be further developed into a novel approach to mitigate this devastating complication of preterm birth.


Assuntos
Lesões Encefálicas , Nascimento Prematuro , Substância Branca , Feminino , Humanos , Animais , Camundongos , Recém-Nascido , Substância Branca/metabolismo , Leite Humano/metabolismo , Proteínas Hedgehog/metabolismo , Ventrículos Cerebrais/metabolismo , Oligodendroglia/fisiologia
6.
Sci Total Environ ; 867: 161442, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623671

RESUMO

Conventional views of saltwater intrusion (SWI), where a basal saline wedge extends inland below fresh groundwater, can be complicated by the influence of saltwater cells in the upper part of aquifers in areas affected by tidal cycles. Distinguishing the contribution of each saltwater source may prove fundamental for well design and resource management. Application of time-lapse electrical resistivity imaging (ERI) during a 32-h pumping test in a pristine unconfined coastal sand aquifer, affected by strong tidal ranges (>2 m), aimed to evaluate the potential of the method to characterize the source of induced SWI in four dimensions (three dimensions and time). Water level monitoring during the test revealed that at the end of pumping, the upper 2 m of the aquifer had dewatered in the vicinity of the well field, reversing hydraulic gradients between the aquifer and the sea. This induced SI, with mixing models of well head water quality suggesting that saline water contributions to total discharge rose from 4 % to 8 %. ERI results reflected dewatering through an increase in resistivity in the upper 2-6 m of the aquifer, while a decline in resistivity, relative to background conditions, occurred immediately below this, reflecting the migration of saline water through the upper layers of the aquifer to the pumping well. By contrast no change in resistivity occurred at depth, indicating no significant change in contribution from the basal saline water to discharge. Test findings suggest that future water resource development at the site should focus on close monitoring of shallow pumping, or pumping from deeper parts of the aquifer, while more generally demonstrating the value of time-lapse geophysical methods in informing coastal water resource management.

7.
Pest Manag Sci ; 79(5): 1743-1749, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36622037

RESUMO

BACKGROUND: Insects of the order Lepidoptera are among the most destructive global pests, causing billions of dollars in damage annually. A new class of N-arylpyrazole-4-methylpiperidines with potent activity on lepidopteran species has been discovered. RESULTS: In a high-throughput insecticide screen compound 1 was identified to possess modest activity on the lepidopteran insect Plutella xylostella. Optimization of 1 to compound 42 resulted in a compound with excellent activity on Spodoptera exigua, Spodoptera frugiperda, and Helicoverpa zea with median lethal concentrations values of 2.8, 1.4, and 12.5 ppm respectively. Although the mode of action remains unknown, these compounds do not appear to work by many of the known biochemical mechanisms of insect control. CONCLUSION: N-Arylpyrazole-4-methylpiperidines represent a new class of insecticides with excellent activity on a broad spectrum of lepidopteran pests. Studies to date indicate the potential for a novel mode of action; however, the target site is unknown at present. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Pirazóis/farmacologia , Insetos , Controle de Insetos/métodos , Spodoptera , Larva
8.
Br J Ophthalmol ; 107(2): 242-247, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34389548

RESUMO

BACKGROUND/AIMS: Neonatal insults from systemic diseases have been implicated in the pathway of impaired neurodevelopment in preterm infants. We aimed to investigate the associations between systemic health factors and retinal nerve fibre layer (RNFL) thickness in preterm infants. METHODS: We prospectively enrolled infants and imaged both eyes at 36±1 weeks postmenstrual age (PMA) using a hand-held optical coherence tomography system at the bedside in the Duke intensive care nurseries. We evaluated associations between RNFL thickness and 29 systemic health factors using univariable and multivariable regression models. RESULTS: 83 infants with RNFL thickness measures were included in this study. Based on the multivariable model, RNFL thickness was positively associated with infant weight at imaging and was negatively associated with sepsis/necrotising enterocolitis (NEC). RNFL thickness was 10.4 µm (95% CI -15.9 to -4.9) lower in infants with than without sepsis/NEC in the univariable analysis (p<0.001). This difference remained statistically significant after adjustment for confounding variables in various combinations (birth weight, birthweight percentile, gestational age, infant weight at imaging and growth velocity). A 250 g increase in infant weight at imaging was associated with a 3.1 µm (95% CI 2.1 to 4.2) increase in RNFL thickness in the univariable analysis (p<0.001). CONCLUSIONS: Low infant weight and sepsis/NEC were independently associated with thinner RNFL in preterm infants at 36 weeks PMA. To our knowledge, this study is the first to suggest that sepsis/NEC may affect retinal neurodevelopment. Future longitudinal studies are needed to investigate this relationship further.


Assuntos
Recém-Nascido Prematuro , Sepse , Humanos , Recém-Nascido , Células Ganglionares da Retina , Retina/anatomia & histologia , Peso ao Nascer , Tomografia de Coerência Óptica/métodos , Fibras Nervosas
10.
Pestic Biochem Physiol ; 174: 104798, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838722

RESUMO

The ryanodine receptor (RyR) is an intracellular calcium channel critical to the regulation of insect muscle contraction and the target site of diamide insecticides such as chlorantraniliprole, cyantraniliprole and flubendiamide. To-date, diamides are the only known class of synthetic molecules with high potency against insect RyRs. Target-based screening of an informer library led to discovery of a novel class of RyR activators, pyrrole-2-carboxamides. Efforts to optimize receptor activity resulted in analogs with potency comparable to that of commercial diamides when tested against RyR of the fruit fly, Drosophila melanogaster. Surprisingly, testing of pyrrole-2-carboxamides in whole-insect screens showed poor insecticidal activity, which is partially attributed to differential selectivity among insect receptors and rapid detoxification. Among various lepidopteran species field resistance to diamide insecticides has been well documented and in many cases has been attributed to a single point mutation, G4946E, of the RyR gene. As with diamide insecticides, the G4946E mutation confers greatly reduced sensitivity to pyrrole-2-carboxamides. This, coupled with findings from radioligand binding studies, indicates a shared binding domain between anthranilic diamides and pyrrole-2-carboxamides.


Assuntos
Inseticidas , Mariposas , Animais , Drosophila melanogaster/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/toxicidade , Mariposas/metabolismo , Pirróis/toxicidade , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , ortoaminobenzoatos/toxicidade
11.
NMR Biomed ; 33(10): e4365, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32627266

RESUMO

PURPOSE: To probe cerebral microstructural abnormalities and assess changes of neuronal density in Disrupted-in-Schizophrenia-1 (DISC1) mice using non-Gaussian diffusion and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: Brain specimens of transgenic DISC1 mice (n = 8) and control mice (n = 7) were scanned. Metrics of neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging (DKI), as well as QSM, were acquired. Cell counting was performed on Nissl-stained sections. Group differences of imaging metrics and cell density were assessed. Pearson correlations between imaging metrics and cell densities were also examined. RESULTS: Significant increases of neuronal density were observed in the hippocampus of DISC1 mice. DKI metrics such as mean kurtosis exhibited significant group differences in the caudate putamen (P = 0.015), cerebral cortex (P = 0.021), and hippocampus (P = 0.011). However, DKI metrics did not correlate with cell density. In contrast, significant positive correlation between density of neurons and the neurite density index of NODDI in the hippocampus was observed (r = 0.783, P = 0.007). Significant correlation between density of neurons and susceptibility (r = 0.657, P = 0.039), as well as between density of neuroglia and susceptibility (r = 0.750, P = 0.013), was also observed in the hippocampus. CONCLUSION: The imaging metrics derived from DKI were not sensitive specifically to cell density, while NODDI could provide diffusion metrics sensitive to density of neurons. The magnetic susceptibility values derived from the QSM method can serve as a sensitive biomarker for quantifying neuronal density.


Assuntos
Imagem de Tensor de Difusão , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Contagem de Células , Hipocampo/diagnóstico por imagem , Fenômenos Magnéticos , Camundongos Mutantes , Camundongos Transgênicos
12.
J Colloid Interface Sci ; 514: 21-29, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29232597

RESUMO

We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law.

13.
Sci Signal ; 10(500)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018170

RESUMO

Birth defects of the heart and face are common, and most have no known genetic cause, suggesting a role for environmental factors. Maternal fever during the first trimester is an environmental risk factor linked to these defects. Neural crest cells are precursor populations essential to the development of both at-risk tissues. We report that two heat-activated transient receptor potential (TRP) ion channels, TRPV1 and TRPV4, were present in neural crest cells during critical windows of heart and face development. TRPV1 antagonists protected against the development of hyperthermia-induced defects in chick embryos. Treatment with chemical agonists of TRPV1 or TRPV4 replicated hyperthermia-induced birth defects in chick and zebrafish embryos. To test whether transient TRPV channel permeability in neural crest cells was sufficient to induce these defects, we engineered iron-binding modifications to TRPV1 and TRPV4 that enabled remote and noninvasive activation of these channels in specific cellular locations and at specific developmental times in chick embryos with radio-frequency electromagnetic fields. Transient stimulation of radio frequency-controlled TRP channels in neural crest cells replicated fever-associated defects in developing chick embryos. Our data provide a previously undescribed mechanism for congenital defects, whereby hyperthermia activates ion channels that negatively affect fetal development.


Assuntos
Anormalidades Congênitas/etiologia , Febre/complicações , Insuficiência Cardíaca/etiologia , Crista Neural/patologia , Canais de Cátion TRPV/metabolismo , Animais , Embrião de Galinha , Galinhas , Anormalidades Congênitas/metabolismo , Anormalidades Congênitas/patologia , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Gravidez , Peixe-Zebra
15.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L208-L216, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913427

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung injury characterized by impaired alveologenesis that may persist into adulthood. Rat models of BPD using varying degrees of hyperoxia to produce injury either cause early mortality or spontaneously recover following removal of the inciting stimulus, thus limiting clinical relevance. We sought to refine an established rat model induced by exposure to 60% O2 from birth by following hyperoxia with intermittent hypoxia (IH). Rats exposed from birth to air or 60% O2 until day 14 were recovered in air with or without IH (FIO2 = 0.10 for 10 min every 6 h) until day 28 Animals exposed to 60% O2 and recovered in air had no evidence of abnormal lung morphology on day 28 or at 10-12 wk. In contrast, 60% O2-exposed animals recovered in IH had persistently increased mean chord length, more dysmorphic septal crests, and fewer peripheral arteries. Recovery in IH also increased pulmonary vascular resistance, Fulton index, and arterial wall thickness. IH-mediated abnormalities in lung structure (but not pulmonary hypertension) persisted when reexamined at 10-12 wk, accompanied by increased pulmonary vascular reactivity and decreased exercise tolerance. Increased mean chord length secondary to IH was prevented by treatment with a peroxynitrite decomposition catalyst [5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin iron (III) chloride, 30 mg/kg/day, days 14-28], an effect accompanied by fewer inflammatory cells. We conclude that IH during recovery from hyperoxia-induced injury prevents recovery of alveologenesis and leads to changes in lung and pulmonary vascular function lasting into adulthood, thus more closely mimicking contemporary BPD.


Assuntos
Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/patologia , Hiperóxia/complicações , Hipóxia/complicações , Lesão Pulmonar/complicações , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/patologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Catálise , Modelos Animais de Doenças , Feminino , Hiperóxia/patologia , Hipertensão Pulmonar/complicações , Hipóxia/patologia , Lesão Pulmonar/patologia , Masculino , Metaloporfirinas/farmacologia , Ácido Peroxinitroso/metabolismo , Condicionamento Físico Animal , Pneumonia/complicações , Ratos Sprague-Dawley
16.
Pest Manag Sci ; 73(4): 796-806, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27896932

RESUMO

BACKGROUND: As the world population grows towards 9 billion by 2050, it is projected that food production will need to increase by 60%. A critical part of this growth includes the safe and effective use of insecticides to reduce the estimated 20-49% loss of global crop yields owing to pests. The development of new insecticides will help to sustain this protection and overcome insecticide resistance. RESULTS: A novel class of mesoionic compounds has been discovered, with exceptional insecticidal activity on a range of Hemiptera and Lepidoptera. These compounds bind to the orthosteric site of the nicotinic acetylcholine receptor and result in a highly potent inhibitory action at the receptor with minimal agonism. The synthesis, biological activity, optimization and mode of action will be discussed. CONCLUSION: Triflumezopyrim insect control will provide a powerful tool for control of hopper species in rice throughout Asia. Dicloromezotiaz can provide a useful control tool for lepidopteran pests, with an underexploited mode of action among these pests. © 2016 Society of Chemical Industry.


Assuntos
Hemípteros/efeitos dos fármacos , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Periplaneta/efeitos dos fármacos , Animais , Afídeos/efeitos dos fármacos , Afídeos/crescimento & desenvolvimento , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Inseticidas/síntese química , Mariposas/crescimento & desenvolvimento , Antagonistas Nicotínicos/metabolismo , Periplaneta/crescimento & desenvolvimento
17.
Nat Neurosci ; 19(12): 1599-1609, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27820602

RESUMO

Inflammation induced by innate immunity influences the development of T cell-mediated autoimmunity in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). We found that strong activation of innate immunity induced Nod-like receptor protein 3 (NLRP3) inflammasome-independent and interferon-ß (IFNß)-resistant EAE (termed type B EAE), whereas EAE induced by weak activation of innate immunity requires the NLRP3 inflammasome and is sensitive to IFNß treatment. Instead, an alternative inflammatory mechanism, including membrane-bound lymphotoxin-ß receptor (LTßR) and CXC chemokine receptor 2 (CXCR2), is involved in type B EAE development, and type B EAE is ameliorated by antagonizing these receptors. Relative expression of Ltbr and Cxcr2 genes was indeed enhanced in patients with IFNß-resistant multiple sclerosis. Remission was minimal in type B EAE due to neuronal damages induced by semaphorin 6B upregulation on CD4+ T cells. Our data reveal a new inflammatory mechanism by which an IFNß-resistant EAE subtype develops.


Assuntos
Encefalomielite Autoimune Experimental , Interferon beta/imunologia , Receptor beta de Linfotoxina/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Interferon beta/genética , Camundongos Knockout , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Receptores de Interleucina-8B/genética , Linfócitos T/imunologia
18.
Insect Biochem Mol Biol ; 74: 32-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130855

RESUMO

Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 µM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick ß2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid.


Assuntos
Afídeos/efeitos dos fármacos , Inseticidas/farmacologia , Antagonistas Nicotínicos/metabolismo , Periplaneta/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinonas/farmacologia , Xenopus laevis/metabolismo , Animais , Afídeos/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Periplaneta/fisiologia
19.
Proc Natl Acad Sci U S A ; 113(13): 3428-35, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26929359

RESUMO

Disrupted brain iron homeostasis is a common feature of neurodegenerative disease. To begin to understand how neuronal iron handling might be involved, we focused on dopaminergic neurons and asked how inactivation of transport proteins affected iron homeostasis in vivo in mice. Loss of the cellular iron exporter, ferroportin, had no apparent consequences. However, loss of transferrin receptor 1, involved in iron uptake, caused neuronal iron deficiency, age-progressive degeneration of a subset of dopaminergic neurons, and motor deficits. There was gradual depletion of dopaminergic projections in the striatum followed by death of dopaminergic neurons in the substantia nigra. Damaged mitochondria accumulated, and gene expression signatures indicated attempted axonal regeneration, a metabolic switch to glycolysis, oxidative stress, and the unfolded protein response. We demonstrate that loss of transferrin receptor 1, but not loss of ferroportin, can cause neurodegeneration in a subset of dopaminergic neurons in mice.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Ferro/metabolismo , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Homeostase , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/patologia , Receptores da Transferrina/deficiência , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
20.
Bioorg Med Chem Lett ; 24(9): 2188-92, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24703234

RESUMO

N-Substituted amino-2(5H)-oxazolones A are a novel class of insecticides acting as nicotinic acetylcholine receptor (nAChR) agonists and show potent activity against hemipteran insect species. Here we report the discovery and preparation of this class of chemistry. Our efforts in SAR elucidation, biological activity evaluation, as well as mode-of-action studies are also presented.


Assuntos
Insetos/efeitos dos fármacos , Inseticidas/química , Oxazolona/química , Aminação , Animais , Insetos/fisiologia , Inseticidas/toxicidade , Oxazolona/toxicidade , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA