Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1325: 25-60, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495529

RESUMO

Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.


Assuntos
Estudo de Associação Genômica Ampla , Mucinas , Animais , Glicosilação , Humanos , Mucinas/genética , Mucinas/metabolismo , Polissacarídeos , Processamento de Proteína Pós-Traducional
3.
Dev Cell ; 54(5): 669-684.e7, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32710848

RESUMO

The glycome undergoes characteristic changes during histogenesis and organogenesis, but our understanding of the importance of select glycan structures for tissue formation and homeostasis is incomplete. Here, we present a human organotypic platform that allows genetic dissection of cellular glycosylation capacities and systematic interrogation of the roles of distinct glycan types in tissue formation. We used CRISPR-Cas9 gene targeting to generate a library of 3D organotypic skin tissues that selectively differ in their capacity to produce glycan structures on the main types of N- and O-linked glycoproteins and glycolipids. This tissue library revealed distinct changes in skin formation associated with a loss of features for all tested glycoconjugates. The organotypic skin model provides phenotypic cues for the distinct functions of glycoconjugates and serves as a unique resource for further genetic dissection and identification of the specific structural features involved. The strategy is also applicable to other organotypic tissue models.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Epitélio/fisiologia , Polissacarídeos/genética , Biblioteca Gênica , Glicoproteínas/genética , Glicosilação , Humanos , Pele/metabolismo , Pele/patologia
4.
EMBO Rep ; 21(6): e48885, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32329196

RESUMO

Post-translational modifications (PTMs) greatly expand the function and potential for regulation of protein activity, and O-glycosylation is among the most abundant and diverse PTMs. Initiation of O-GalNAc glycosylation is regulated by 20 distinct GalNAc-transferases (GalNAc-Ts), and deficiencies in individual GalNAc-Ts are associated with human disease, causing subtle but distinct phenotypes in model organisms. Here, we generate a set of isogenic keratinocyte cell lines lacking either of the three dominant and differentially expressed GalNAc-Ts. Through the ability of keratinocytes to form epithelia, we investigate the phenotypic consequences of the loss of individual GalNAc-Ts. Moreover, we probe the cellular responses through global transcriptomic, differential glycoproteomic, and differential phosphoproteomic analyses. We demonstrate that loss of individual GalNAc-T isoforms causes distinct epithelial phenotypes through their effect on specific biological pathways; GalNAc-T1 targets are associated with components of the endomembrane system, GalNAc-T2 targets with cell-ECM adhesion, and GalNAc-T3 targets with epithelial differentiation. Thus, GalNAc-T isoforms serve specific roles during human epithelial tissue formation.


Assuntos
N-Acetilgalactosaminiltransferases , Diferenciação Celular , Epitélio/metabolismo , Glicosilação , Humanos , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Polissacarídeos , Processamento de Proteína Pós-Traducional
5.
Proc Natl Acad Sci U S A ; 117(13): 7447-7454, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32165542

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is up-regulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs, and noncanonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is primarily mediated through electrostatic interactions of basic amino acids in the BigDyn N terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the noncanonical amino acid azidophenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn, and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Dinorfinas/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Oócitos/metabolismo , Prótons , Xenopus laevis
6.
Glycobiology ; 30(8): 500-515, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32039448

RESUMO

Glycoside hydrolases (GHs) are found in all domains of life, and at least 87 distinct genes encoding proteins related to GHs are found in the human genome. GHs serve diverse functions from digestion of dietary polysaccharides to breakdown of intracellular oligosaccharides, glycoproteins, proteoglycans and glycolipids. Congenital disorders of GHs (CDGHs) represent more than 30 rare diseases caused by mutations in one of the GH genes. We previously used whole-exome sequencing of a homogenous Danish population of almost 2000 individuals to probe the incidence of deleterious mutations in the human glycosyltransferases (GTs) and developed a mutation map of human GT genes (GlyMAP-I). While deleterious disease-causing mutations in the GT genes were very rare, and in many cases lethal, we predicted deleterious mutations in GH genes to be less rare and less severe given the higher incidence of CDGHs reported worldwide. To probe the incidence of GH mutations, we constructed a mutation map of human GH-related genes (GlyMAP-II) using the Danish WES data, and correlating this with reported disease-causing mutations confirmed the higher prevalence of disease-causing mutations in several GH genes compared to GT genes. We identified 76 novel nonsynonymous single-nucleotide variations (nsSNVs) in 32 GH genes that have not been associated with a CDGH phenotype, and we experimentally validated two novel potentially damaging nsSNVs in the congenital sucrase-isomaltase deficiency gene, SI. Our study provides a global view of human GH genes and disease-causing mutations and serves as a discovery tool for novel damaging nsSNVs in CDGHs.


Assuntos
Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Mutação , Proteoma/genética , Proteoma/metabolismo
7.
Biotechniques ; 68(4): 172-179, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32040336

RESUMO

CRISPR/Cas9 technology is a powerful tool for the design of gene-drive systems to control and/or modify mosquito vector populations; however, CRISPR/Cas9-mediated nonhomologous end joining mutations can have an important impact on generating alleles resistant to the drive and thus on drive efficiency. We demonstrate and compare the insertions or deletions (indels) detection capabilities of two techniques in the malaria vector mosquito Anopheles stephensi: Indel Detection by Amplicon Analysis (IDAA™) and Droplet Digital™ PCR (ddPCR™). Both techniques showed accuracy and reproducibility for indel frequencies across mosquito samples containing different ratios of indels of various sizes. Moreover, these techniques have advantages that make them potentially better suited for high-throughput nonhomologous end joining analysis in cage trials and contained field testing of gene-drive mosquitoes.


Assuntos
Anopheles/genética , Sistemas CRISPR-Cas/genética , Mutação INDEL/genética , Mosquitos Vetores/genética , Reação em Cadeia da Polimerase/métodos , Animais , Reparo do DNA por Junção de Extremidades/genética , Edição de Genes , Malária/transmissão , Mutagênese Insercional/genética
8.
Glycobiology ; 29(9): 645-656, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31172184

RESUMO

Complex carbohydrates serve a wide range of biological functions in cells and tissues, and their biosynthesis involves more than 200 distinct glycosyltransferases (GTfs) in human cells. The kinetic properties, cellular expression patterns and subcellular topology of the GTfs direct the glycosylation capacity of a cell. Most GTfs are ER or Golgi resident enzymes, and their specific subcellular localization is believed to be distributed in the secretory pathway according to their sequential role in the glycosylation process, although detailed knowledge for individual enzymes is still highly fragmented. Progress in quantitative transcriptome and proteome analyses has greatly advanced our understanding of the cellular expression of this class of enzymes, but availability of appropriate antibodies for in situ monitoring of expression and subcellular topology have generally been limited. We have previously used catalytically active GTfs produced as recombinant truncated secreted proteins in insect cells for generation of mouse monoclonal antibodies (mAbs) to human enzymes primarily involved in mucin-type O-glycosylation. These mAbs can be used to probe subcellular topology of active GTfs in cells and tissues as well as their presence in body fluids. Here, we present several new mAbs to human GTfs and provide a summary of our entire collection of mAbs, available to the community. Moreover, we present validation of specificity for many of our mAbs using human cell lines with CRISPR/Cas9 or zinc finger nuclease (ZFN) knockout and knockin of relevant GTfs.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Glicosiltransferases/imunologia , Glicosiltransferases/metabolismo , Mucinas/metabolismo , Animais , Glicosilação , Glicosiltransferases/deficiência , Glicosiltransferases/genética , Células HEK293 , Humanos , Camundongos , Reprodutibilidade dos Testes
9.
Mol Cell Proteomics ; 18(7): 1396-1409, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31040225

RESUMO

Most proteins trafficking the secretory pathway of metazoan cells will acquire GalNAc-type O-glycosylation. GalNAc-type O-glycosylation is differentially regulated in cells by the expression of a repertoire of up to twenty genes encoding polypeptide GalNAc-transferase isoforms (GalNAc-Ts) that initiate O-glycosylation. These GalNAc-Ts orchestrate the positions and patterns of O-glycans on proteins in coordinated, but poorly understood ways - guided partly by the kinetic properties and substrate specificities of their catalytic domains, as well as by modulatory effects of their unique GalNAc-binding lectin domains. Here, we provide the hereto most comprehensive characterization of nonredundant contributions of individual GalNAc-T isoforms to the O-glycoproteome of the human HEK293 cell using quantitative differential O-glycoproteomics on a panel of isogenic HEK293 cells with knockout of GalNAc-T genes (GALNT1, T2, T3, T7, T10, or T11). We confirm that a major part of the O-glycoproteome is covered by redundancy, whereas distinct O-glycosite subsets are covered by nonredundant GalNAc-T isoform-specific functions. We demonstrate that the GalNAc-T7 and T10 isoforms function in follow-up of high-density O-glycosylated regions, and that GalNAc-T11 has highly restricted functions and essentially only serves the low-density lipoprotein-related receptors in linker regions (C6XXXTC1) between the ligand-binding repeats.


Assuntos
Glicômica , Proteômica , Glicopeptídeos/metabolismo , Glicosilação , Células HEK293 , Células Hep G2 , Humanos , Proteoma/metabolismo
11.
J Biol Chem ; 293(49): 19064-19077, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30327431

RESUMO

The GalNAc-type O-glycoproteome is orchestrated by a large family of polypeptide GalNAc-transferase isoenzymes (GalNAc-Ts) with partially overlapping contributions to the O-glycoproteome besides distinct nonredundant functions. Increasing evidence indicates that individual GalNAc-Ts co-regulate and fine-tune specific protein functions in health and disease, and deficiencies in individual GALNT genes underlie congenital diseases with distinct phenotypes. Studies of GalNAc-T specificities have mainly been performed with in vitro enzyme assays using short peptide substrates, but recently quantitative differential O-glycoproteomics of isogenic cells with and without GALNT genes has enabled a more unbiased exploration of the nonredundant contributions of individual GalNAc-Ts. Both approaches suggest that fairly small subsets of O-glycosites are nonredundantly regulated by specific GalNAc-Ts, but how these isoenzymes orchestrate regulation among competing redundant substrates is unclear. To explore this, here we developed isogenic cell model systems with Tet-On inducible expression of two GalNAc-T genes, GALNT2 and GALNT11, in a knockout background in HEK293 cells. Using quantitative O-glycoproteomics with tandem-mass-tag (TMT) labeling, we found that isoform-specific glycosites are glycosylated in a dose-dependent manner and that induction of GalNAc-T2 or -T11 produces discrete glycosylation effects without affecting the major part of the O-glycoproteome. These results support previous findings indicating that individual GalNAc-T isoenzymes can serve in fine-tuned regulation of distinct protein functions.


Assuntos
N-Acetilgalactosaminiltransferases/metabolismo , Proteoma/metabolismo , Sequência de Aminoácidos , Glicosilação , Células HEK293 , Humanos , Isoenzimas/metabolismo , Proteômica/métodos , Polipeptídeo N-Acetilgalactosaminiltransferase
12.
Nat Methods ; 15(11): 881-888, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30104636

RESUMO

Glycosaminoglycans (GAGs) are essential polysaccharides in normal physiology and disease. However, understanding of the contribution of specific GAG structures to specific biological functions is limited, largely because of the great structural heterogeneity among GAGs themselves, as well as technical limitations in the structural characterization and chemical synthesis of GAGs. Here we describe a cell-based method to produce and display distinct GAGs with a broad repertoire of modifications, a library we refer to as the GAGOme. By using precise gene editing, we engineered a large panel of Chinese hamster ovary cells with knockout or knock-in of the genes encoding most of the enzymes involved in GAG biosynthesis, to generate a library of isogenic cell lines that differentially display distinct GAG features. We show that this library can be used for cell-based binding assays, recombinant expression of proteoglycans with distinct GAG structures, and production of distinct GAG chains on metabolic primers that may be used for the assembly of GAG glycan microarrays.


Assuntos
Regulação da Expressão Gênica , Biblioteca Gênica , Glicômica/métodos , Glicosaminoglicanos/metabolismo , Proteoglicanas/metabolismo , Animais , Células CHO , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cricetinae , Cricetulus
13.
J Biol Chem ; 293(19): 7408-7422, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29559555

RESUMO

The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O-glycan sites. Moreover, we found that O-glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O-glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O-glycosylation of LDLR-related proteins and identified conserved O-glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O-glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O-glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de LDL/metabolismo , Acetilgalactosamina/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Cricetulus , Drosophila , Glicosilação , Células HEK293 , Células Hep G2 , Humanos , Ligantes , Lipoproteínas/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Proteínas Recombinantes/metabolismo
14.
Chemistry ; 24(33): 8382-8392, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29601100

RESUMO

The family of polypeptide N-acetylgalactosamine (GalNAc) transferases (GalNAc-Ts) orchestrates the initiating step of mucin-type protein O-glycosylation by transfer of GalNAc moieties to serine and threonine residues in proteins. Deficiencies and dysregulation of GalNAc-T isoenzymes are related to different diseases. Recently, it has been demonstrated that an inactive GalNAc-T2 mutant (F104S), which is not located at the active site, induces low levels of high-density lipoprotein cholesterol (HDL-C) in humans. Herein, the molecular basis for F104S mutant inactivation has been deciphered. Saturation transfer difference NMR spectroscopy experiments demonstrate that the mutation induces loss of binding to peptide substrates. Analysis of the crystal structure of the F104S mutant bound to UDP-GalNAc (UDP=uridine diphosphate), combined with molecular dynamics (MD) simulations, has revealed that the flexible loop is disordered and displays larger conformational changes in the mutant enzyme than that in the wild-type (WT) enzyme. 19 F NMR spectroscopy experiments reveal that the WT enzyme only reaches the active state in the presence of UDP-GalNAc, which provides compelling evidence that GalNAc-T2 adopts a UDP-GalNAc-dependent induced-fit mechanism. The F104S mutation precludes the enzyme from achieving the active conformation and concomitantly binding peptide substrates. This study provides new insights into the catalytic mechanism of the large family of GalNAc-Ts and how these enzymes orchestrate protein O-glycosylation.


Assuntos
Mucina-1/análise , Mucina-1/química , Mucinas/química , N-Acetilgalactosaminiltransferases/análise , N-Acetilgalactosaminiltransferases/química , Difosfato de Uridina/química , Catálise , Domínio Catalítico , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Polipeptídeo N-Acetilgalactosaminiltransferase
15.
Glycobiology ; 28(5): 295-305, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315387

RESUMO

Over 200 glycosyltransferases are involved in the orchestration of the biosynthesis of the human glycome, which is comprised of all glycan structures found on different glycoconjugates in cells. The glycome is vast, and despite advancements in analytic strategies it continues to be difficult to decipher biological roles of glycans with respect to specific glycan structures, type of glycoconjugate, particular glycoproteins, and distinct glycosites on proteins. In contrast to this, the number of glycosyltransferase genes involved in the biosynthesis of the human glycome is manageable, and the biosynthetic roles of most of these enzymes are defined or can be predicted with reasonable confidence. Thus, with the availability of the facile CRISPR/Cas9 gene editing tool it now seems easier to approach investigation of the functions of the glycome through genetic dissection of biosynthetic pathways, rather than by direct glycan analysis. However, obstacles still remain with design and validation of efficient gene targeting constructs, as well as with the interpretation of results from gene targeting and the translation of gene function to glycan structures. This is especially true for glycosylation steps covered by isoenzyme gene families. Here, we present a library of validated high-efficiency gRNA designs suitable for individual and combinatorial targeting of the human glycosyltransferase genome together with a global view of the predicted functions of human glycosyltransferases to facilitate and guide gene targeting strategies in studies of the human glycome.


Assuntos
Sistemas CRISPR-Cas/genética , Biblioteca Gênica , Glicosiltransferases/genética , RNA Guia de Cinetoplastídeos/genética , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/metabolismo , Reprodutibilidade dos Testes
16.
J Biol Chem ; 293(4): 1298-1314, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29187600

RESUMO

Aberrant expression of O-glycans is a hallmark of epithelial cancers. Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) that target different proteins and are differentially expressed in cells and organs. Here, we investigated the expression patterns of all of the GalNAc-Ts in colon cancer by analyzing transcriptomic data. We found that GalNAc-T6 was highly up-regulated in colon adenocarcinomas but absent in normal-appearing adjacent colon tissue. These results were verified by immunohistochemistry, suggesting that GalNAc-T6 plays a role in colon carcinogenesis. To investigate the function of GalNAc-T6 in colon cancer, we used precise gene targeting to produce isogenic colon cancer cell lines with a knockout/rescue system for GALNT6 GalNAc-T6 expression was associated with a cancer-like, dysplastic growth pattern, whereas GALNT6 knockout cells showed a more normal differentiation pattern, reduced proliferation, normalized cell-cell adhesion, and formation of crypts in tissue cultures. O-Glycoproteomic analysis of the engineered cell lines identified a small set of GalNAc-T6-specific targets, suggesting that this isoform has unique cellular functions. In support of this notion, the genetically and functionally closely related GalNAc-T3 homolog did not show compensatory functionality for effects observed for GalNAc-T6. Taken together, these data strongly suggest that aberrant GalNAc-T6 expression and site-specific glycosylation is involved in oncogenic transformation.


Assuntos
Adenocarcinoma/enzimologia , Diferenciação Celular , Colo/enzimologia , Neoplasias do Colo/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Mucosa Intestinal/enzimologia , N-Acetilgalactosaminiltransferases/biossíntese , Proteínas de Neoplasias/biossíntese , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Glicosilação , Humanos , Mucosa Intestinal/patologia , N-Acetilgalactosaminiltransferases/genética , Proteínas de Neoplasias/genética
17.
Prog Mol Biol Transl Sci ; 152: 49-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29150004

RESUMO

The introduction of CRISPR/Cas9 gene editing in mammalian cells is a scientific breakthrough, which has greatly affected basic research and gene therapy. The simplicity and general access to CRISPR/Cas9 reagents has in an unprecedented manner "democratized" gene targeting in biomedical research, enabling genetic engineering of any gene in any cell, tissue, organ, and organism. The ability for fast, precise, and efficient profiling of the double-stranded break induced insertions and deletions (indels), mediated by any of the available programmable nucleases, is paramount to any given gene targeting approach. In this study we review the most commonly used indel detection methods and using a robust, sensitive, and cost efficient Indel Detection by Amplicon Analysis method, we have investigated the impact of the most commonly used CRISPR/Cas9 delivery formats, including lentivirus transduction, plasmid lipofection, and ribo nuclear protein electroporation, on the dynamics of indel profile formation. We observe rapid indel formation using RNP electroporation, especially with synthetic stabilized gRNA, as well as long-term decline in overall indel frequency with lipofectamine-based, plasmid transfection methods. Most methods reach peak editing on day 2-3 postdelivery. Furthermore, we find relative increase in frequency of larger size indels (>6bp) under condition of persistent editing using stably integrated lentiviral gRNA and Cas9 vectors.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mutação INDEL , Reparo do DNA , Humanos
18.
Biol Chem ; 398(11): 1237-1246, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28672761

RESUMO

O-GalNAc glycans are important structures in cellular homeostasis. Their biosynthesis is initiated by members of the polypeptide GalNAc-transferase (ppGalNAc-T) enzyme family. Mutations in ppGalNAc-T3 isoform cause diseases (congenital disorders of glycosylation) in humans. The K626 residue located in the C-terminal ß-trefoil fold of ppGalNAc-T3 was predicted to be a site with high likelihood of acetylation by CBP/p300 acetyltransferase. We used a site-directed mutagenesis approach to evaluate the role of this acetylation site in biological properties of the enzyme. Two K626 mutants of ppGalNAc-T3 (T3K626Q and T3K626A) had GalNAc-T activities lower than that of wild-type enzyme. Direct and competitive interaction assays revealed that GalNAc recognition by the lectin domain was altered in the mutants. The presence of GlcNAc glycosides affected the interaction of the three enzymes with mucin-derived peptides. In GalNAc-T activity assays, the presence of GlcNAc glycosides significantly inhibited activity of the mutant (T3K626Q) that mimicked acetylation. Our findings, taken together, reveal the crucial role of the K626 residue in the C-terminal ß-trefoil fold in biological properties of human ppGalNAc-T3. We propose that acetylated residues on ppGalNAc-T3 function as control points for enzyme activity, and high level of GlcNAc glycosides promote a synergistic regulatory mechanism, leading to a metabolically disordered state.


Assuntos
Lectinas/química , Lectinas/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Acetilação , Humanos , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/isolamento & purificação , Mutação Puntual , Polipeptídeo N-Acetilgalactosaminiltransferase
19.
Nat Protoc ; 12(3): 581-603, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28207001

RESUMO

This protocol describes methods for increasing and evaluating the efficiency of genome editing based on the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) system, transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs). First, Indel Detection by Amplicon Analysis (IDAA) determines the size and frequency of insertions and deletions elicited by nucleases in cells, tissues or embryos through analysis of fluorophore-labeled PCR amplicons covering the nuclease target site by capillary electrophoresis in a sequenator. Second, FACS enrichment of cells expressing nucleases linked to fluorescent proteins can be used to maximize knockout or knock-in editing efficiencies or to balance editing efficiency and toxic/off-target effects. The two methods can be combined to form a pipeline for cell-line editing that facilitates the testing of new nuclease reagents and the generation of edited cell pools or clonal cell lines, reducing the number of clones that need to be generated and increasing the ease with which they are screened. The pipeline shortens the time line, but it most prominently reduces the workload of cell-line editing, which may be completed within 4 weeks.


Assuntos
Análise Mutacional de DNA/métodos , Desoxirribonucleases/metabolismo , Citometria de Fluxo/métodos , Edição de Genes/métodos , Genômica/métodos , Mutação INDEL , Animais , Células CHO , Cricetinae , Cricetulus , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes
20.
J Biol Chem ; 291(49): 25339-25350, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27738109

RESUMO

Glycan biosynthesis occurs mainly in Golgi. Molecular organization and functional regulation of this process are not well understood. We evaluated the extrinsic effect of lectin domains (ß-trefoil fold) of polypeptide GalNAc-transferases (ppGalNAc-Ts) on catalytic activity of glycosyltransferases during O-GalNAc glycan biosynthesis. The presence of lectin domain T3lec or T4lec during ppGalNAc-T2 and ppGalNAc-T3 catalytic reaction had a clear inhibitory effect on GalNAc-T activity. Interaction of T3lec or T4lec with ppGalNAc-T2 catalytic domain was not mediated by carbohydrate. T3lec, but not T2lec and T4lec, had a clear activating effect on Drosophila melanogaster core 1 galactosyltransferase enzyme activity and a predominant inhibitory effect on in vivo human core 1 glycan biosynthesis. The regulatory role of the ß-trefoil fold of ppGalNAc-Ts in enzymatic activity of glycosyltransferases involved in the O-glycan biosynthesis pathway, described here for the first time, helps clarify the mechanism of biosynthesis of complex biopolymers (such as glycans) that is not template-driven.


Assuntos
Proteínas de Drosophila/química , N-Acetilgalactosaminiltransferases/química , Dobramento de Proteína , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HeLa , Humanos , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/química , Polissacarídeos/genética , Domínios Proteicos , Células Sf9 , Spodoptera , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA