Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3479, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661250

RESUMO

Genetic factors contribute to the risk of thrombotic diseases. Recent genome wide association studies have identified genetic loci including SLC44A2 which may regulate thrombosis. Here we show that Slc44a2 controls platelet activation and thrombosis by regulating mitochondrial energetics. We find that Slc44a2 null mice (Slc44a2(KO)) have increased bleeding times and delayed thrombosis compared to wild-type (Slc44a2(WT)) controls. Platelets from Slc44a2(KO) mice have impaired activation in response to thrombin. We discover that Slc44a2 mediates choline transport into mitochondria, where choline metabolism leads to an increase in mitochondrial oxygen consumption and ATP production. Platelets lacking Slc44a2 contain less ATP at rest, release less ATP when activated, and have an activation defect that can be rescued by exogenous ADP. Taken together, our data suggest that mitochondria require choline for maximum function, demonstrate the importance of mitochondrial metabolism to platelet activation, and reveal a mechanism by which Slc44a2 influences thrombosis.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Ativação Plaquetária/fisiologia , Trombose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Masculino , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Ativação Plaquetária/genética , Agregação Plaquetária/genética , Agregação Plaquetária/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Trombose/genética
2.
J Clin Invest ; 129(2): 492-493, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561385

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a fatal disease characterized by premature aging in which young children fail to thrive and adolescents die from myocardial infarction or stroke. The pathogenesis of HGPS is studied intensively because the mechanisms of premature aging may lead to a better understanding of normal aging. In this issue of the JCI, Osmanagic-Myers and colleagues identify the cellular mechanisms that lead to vascular abnormalities and death in children with HGPS.


Assuntos
Infarto do Miocárdio , Progéria , Acidente Vascular Cerebral , Adolescente , Senilidade Prematura , Criança , Pré-Escolar , Humanos , Lamina Tipo A
3.
Ann N Y Acad Sci ; 1310: 44-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24495120

RESUMO

Processes that regulate quiescence, self-renewal, and differentiation of hematopoietic stem cells (HSCs) are not well understood. Owing, in part, to the ability of xenobiotic ligands to have persistent effects on the immune system in experimental animals, there has been much work to define a physiological role of the aryl hydrocarbon receptor (AhR) and its relationship to human disease. Persistent AhR activation by dioxin, a potent agonist, results in altered numbers and function of HSCs in mice. HSCs from AhR(-/-) knockout (KO) mice are hyperproliferative and have an altered cell cycle. Aging KO mice show characteristics consistent with premature bone marrow exhaustion. We propose that the increased proliferation of HSCs lacking AhR expression or activity is a result of loss of quiescence, and as such, AhR normally acts as a negative regulator to curb excessive or unnecessary proliferation. Similarly, prolonged and/or inappropriate stimulation of AhR activity may compromise the ability of HSCs to sense environmental signals that allow these cells to balance quiescence, proliferation, migration, and differentiation. These data and others support a hypothesis that deregulation of AhR function has an important role in HSC regulation and in the etiology and/or progression of certain hematopoietic diseases, many of which are associated with aging.


Assuntos
Ciclo Celular/genética , Proliferação de Células , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Humanos , Imunidade/genética , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA