Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520999

RESUMO

Satellite retrieval of total suspended solids (TSS) and chlorophyll-a (chl-a) was performed for the Gold Coast Broadwater, a micro-tidal estuarine lagoon draining a highly developed urban catchment area with complex and competing land uses. Due to the different water quality properties of the rivers and creeks draining into the Broadwater, sampling sites were grouped in clusters, with cluster-specific empirical/semi-empirical prediction models developed and validated with a leave-one-out cross validation approach for robustness. For unsampled locations, a weighted-average approach, based on their proximity to sampled sites, was developed. Confidence intervals were also generated, with a bootstrapping approach and visualised through maps. Models yielded varying accuracies (R2 = 0.40-0.75). Results show that, for the most significant poor water quality event in the dataset, caused by summer rainfall events, elevated TSS concentrations originated in the northern rivers, slowly spreading southward. Conversely, high chl-a concentrations were first recorded in the southernmost regions of the Broadwater.


Assuntos
Clorofila , Monitoramento Ambiental , Austrália , Clorofila/análise , Clorofila A , Monitoramento Ambiental/métodos , Qualidade da Água
2.
Aquat Toxicol ; 255: 106394, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603369

RESUMO

Cell-based toxicity testing has emerged as a useful tool in (eco)toxicological research, allowing the ethical assessment of the effects of contaminants such as trace metals on marine megafauna. However, metal interactions with various dissolved ligands in the microplate environment may influence the effective exposure concentrations. Hence, the cells are not exposed to the nominal concentrations within the test system. This study aimed to establish and evaluate the effectiveness of cell-based bioassays for investigating the toxicity of selected metals in dugongs through the following objectives: (1) measure the cytotoxic potential of cadmium (Cd2+), and chromium (Cr6+) to dugong skin cell cultures, (2) investigate the interactions between media constituents and selected trace metals in cell-based bioassays, and (3) evaluate the risk to a free-ranging population of dugong based on effect values. Chromium was the most toxic of the metals tested (EC50 = 1.14 µM), followed by Cd (EC50 = 6.35 µM). Assessment of ultrafiltered (< 3 kDa) exposure media showed that 1% and 92.5% of Cr and Cd were associated with larger organic components of the media. Further, the binding of Cd to media constituents was calculated to underestimate Cd toxicity in cell-based assays by an order of magnitude. This understanding of metal partitioning in cell-based bioassays provides a more accurate method for assessing toxicity in cell-based bioassays. In addition, this study illustrated that dugong cells are more sensitive to Cr and Cd than other marine wildlife species. The chemical risk assessment found the dugong population in Moreton Bay to be at high risk from Cd exposure.


Assuntos
Dugong , Oligoelementos , Poluentes Químicos da Água , Animais , Dugong/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Poluentes Químicos da Água/toxicidade , Metais/metabolismo , Cromo , Oligoelementos/metabolismo , Bioensaio
3.
Mar Pollut Bull ; 185(Pt A): 114234, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257244

RESUMO

This study establishes baseline water quality characteristics for the Gold Coast Broadwater, southern Moreton Bay (Australia) utilising routinely monitored parameters between 2016 and 2021, across 18 sites. Combined site mean concentrations of NOx-N, NH3-N and total nitrogen were 11.4 ± 33.4 µg/L, 12.7 ± 27.2 µg/L, and 169 ± 109 µg/L, respectively, whilst PO4-P and total phosphorous were 7.30 ± 5.10 µg/L and 21.7 ± 14.1 µg/L. Additionally, total suspended solids and turbidity combined site means were 6.6 ± 6.0 mg/L and 3.4 ± 2.9 NTU, respectively. During high rainfall periods nutrient concentrations increased by up to >200-, >150-, 15-, 12- and >12-fold for NOx-N, NH3-N, TN, PO4-P and TP, respectively, compared to quiescent conditions. Furthermore, TSS and NTU values increased by up to 15- and 40-fold during periods of measured rainfall compared to quiescent conditions.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Baías , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise
4.
Water Res ; 209: 117967, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34936976

RESUMO

Stormwater runoff typically contains significant quantities of metal contaminants that enter urban waterways over short durations and represent a potential risk to water quality. The origin of metals within the catchment and processes that occur over the storm can control the partitioning of metals between a range of different forms. Understanding the fraction of metals present in a form that is potentially bioavailable to aquatic organisms is useful for environmental risk assessment. To help provide this information, the forms and dynamics of metal contaminants in an urban system were assessed across a storm. Temporal patterns in the concentration of metals in dissolved and particulate (total suspended solids; TSS) forms were assessed from water samples, and diffusive gradients in thin-films (DGTs) were deployed to measure the DGT-labile time-integrated metal concentration. Results indicate that the concentrations of dissolved and TSS-associated metals increased during the storm, with the metals Al, Cd, Co, Cu, Pb and Zn representing the greatest concern relative to water quality guideline values (GVs). The portion of labile metal as measured by DGT devices indicated that during the storm a substantial fraction (∼98%) of metals were complexed and pose a lower risk of acute toxicity to aquatic organisms. Comparison of DGT results to GVs indicate that current GVs are likely quite conservative when assessing stormwater pollution risks with regards to metal contaminants. This study provides valuable insight into the forms and dynamics of metals in an urban system receiving stormwater inputs and assists with the development of improved approaches for the assessment of short-term, intermittent discharge events.

5.
Metabolomics ; 17(10): 90, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34557980

RESUMO

INTRODUCTION: Poor gestational outcomes due to placental insufficiency can have lifelong consequences for mother and child. OBJECTIVE: There is a need for better methods of diagnosis, and elemental metabolomics may provide a means to determine the risk of gestational disorders. METHODS: This study used blood plasma samples collected at 36 weeks' gestation from women who later developed preeclampsia (n = 38), or small-for-gestational age babies (n = 91), along with matched controls (n = 193). Multi-element analysis was conducted by inductively coupled plasma mass spectrometer (ICP-MS), allowing simultaneous measurement of 28 elements. RESULTS: Women who later developed PE, exhibited significantly increased concentrations of K, Rb and Ba. For SGA pregnancies, there was a significant increase in Cu and a decrease in As concentrations. Despite significant differences in single elements, the elemental profile of groups indicated no clustering of control, PE, or SGA samples. Positive predicative values correctly identified approximately 60% of SGA and 70% of PE samples. CONCLUSION: This is the first-time elemental metabolomics has been used to predict SGA and PE at 36 weeks. Though significant changes were identified, routine clinical use may be limited but may contribute to a multi marker test. Future analysis should include other biomarkers, metabolic data or clinical measurements made throughout gestation.


Assuntos
Pré-Eclâmpsia , Oligoelementos , Biomarcadores , Criança , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Placenta , Pré-Eclâmpsia/diagnóstico , Gravidez
6.
Environ Sci Technol ; 55(17): 11848-11858, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34382781

RESUMO

Synchrotron-based X-ray fluorescence microscopy (XFM) coupled with X-ray absorption near-edge structure (XANES) imaging was used to study selenium (Se) biodistribution and speciation in Limnodynastes peronii tadpoles. Tadpoles were exposed to dissolved Se (30 µg/L) as selenite (SeIV) or selenate (SeVI) for 7 days followed by 3 days of depuration. High-resolution elemental maps revealed that Se partitioned primarily in the eyes (specifically the eye lens, iris, and retinal pigmented epithelium), digestive and excretory organs of SeIV-exposed tadpoles. Speciation analysis confirmed that the majority of accumulated Se was converted to organo-Se. Multielement analyses provided new information on Se colocalization and its impact on trace element homeostasis. New insights into the fate of Se on a whole organism scale contribute to our understanding of the mechanisms and risks associated with Se pollution.


Assuntos
Compostos de Selênio , Selênio , Animais , Larva , Ácido Selênico , Síncrotrons , Distribuição Tecidual , Áreas Alagadas
7.
Biol Trace Elem Res ; 199(1): 26-40, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32239374

RESUMO

A normal pregnancy is essential to establishing a healthy start to life. Complications during have been associated with adverse perinatal outcomes and lifelong health problems. The ability to identify risk factors associated with pregnancy complications early in gestation is vitally important for preventing negative foetal outcomes. Maternal nutrition has been long considered vital to a healthy pregnancy, with micronutrients and trace elements heavily implicated in maternofoetal metabolism. This study proposed the use of elemental metabolomics to study multiple elements at 18 weeks gestation from blood plasma and urine to construct models that could predict outcomes such as small for gestational age (SGA) (n = 10), low placental weight (n = 18), and preterm birth (n = 13) from control samples (n = 87). Samples collected from the Lyell McEwin Hospital in Adelaide, South Australia, were measured for 27 plasma elements and 37 urine elements by inductively coupled plasma mass spectrometry. Exploratory analysis indicated an average selenium concentration 20 µg/L lower than established reference ranges across all groups, low zinc in preterm (0.64 µg/L, reference range 0.66-1.10 µg/L), and higher iodine in preterm and SGA gestations (preterm 102 µg/L, SGA 111 µg/L, reference range 40-92 µg/L). Using random forest algorithms with receiver operating characteristic curves, low placental weight was predicted with 86.7% accuracy using plasma, 78.6% prediction for SGA with urine, and 73.5% determination of preterm pregnancies. This study indicates that elemental metabolomic modelling could provide a means of early detection of at-risk pregnancies allowing for more targeted monitoring of mothers, with potential for early intervention strategies to be developed.


Assuntos
Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Metabolômica , Placenta , Plasma , Gravidez , Resultado da Gravidez
8.
Sci Total Environ ; 740: 140042, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927538

RESUMO

There is increasing interest in understanding potential impacts of complex pollutant profiles to long-lived species such as the green sea turtle (Chelonia mydas), a threatened megaherbivore resident in north Australia. Dietary ingestion may be a key exposure route for metals in these animals and marine plants can accumulate metals at higher concentrations than the surrounding environment. We investigated concentrations of 19 metals and metalloids in C. mydas forage samples collected from a group of offshore coral cays and two coastal bays over a period of 2-3 years. Although no samples exceeded sediment quality guidelines, coastal forage Co, Fe, and V concentrations were up to 2-fold higher, and offshore forage Sr concentrations were ~3-fold higher, than global seagrass means. Principal Component Analysis differentiated coastal bay from coral cay forage according to patterns consistent with underlying terrigenous-type or marine carbonate-type sediment geochemistry, such that coastal bay forage was higher in Fe, Co, Mn, Cu, and Mo (and others) but forage from coral cays was higher in Sr and U. Forage from the two coastal bays was differentiated according to temporal variation in metal profiles, which may be associated with a more episodic sediment disturbance regime in one of the bays. For all study locations, some forage metal concentrations were higher than previously reported in the global literature. Our results suggest that forage metal profiles may be influenced by the presence of some metals in insoluble forms or bound to ultra-fine sediment particles adhered to forage surfaces. Metal concentrations in Great Barrier Reef forage may be present at levels higher than expected from the global seagrass literature and appear strongly influenced by underlying sediment geochemistry.


Assuntos
Antozoários , Metais Pesados/análise , Tartarugas , Poluentes Químicos da Água/análise , Animais , Austrália , Baías , Monitoramento Ambiental , Sedimentos Geológicos
9.
Sci Total Environ ; 710: 136354, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32050372

RESUMO

The Macleay River in eastern Australia is severely impacted by historic stibnite- and arsenopyrite-rich mine-tailings. We explore the partitioning, speciation, redox-cycling, mineral associations and mobility of antimony and arsenic along >70 km reach of the upper Macleay River. Elevated Sb/As occur throughout the active channel-zone and in floodplain pockets up to the regolith margin, indicating broad dispersal during floods. Sb concentrations in bulk-sediments decay exponentially downstream more efficiently than As, likely reflecting sediment dilution, hydraulic sorting and comparatively greater leaching of (more mobile) Sb(V) species. However, Sb in bulk-sediments becomes proportionally more bio-available downstream. Sb(V) and As(V) species dominate stream fine-grained (<180 µm) bulk-sediments, reflecting oxidative weathering downstream. Increasing poorly-crystalline Fe(III) [Fe(III)HCl] in bulk-sediments also indicates progressive oxidative weathering of Fe(II)-bearing minerals downstream and significant (P < .05) correlations exist between PO4-3-exchangeable As and Sb fractions and Fe(III)HCl. Accumulations of poorly-crystalline Fe(III) precipitates (mainly ferrihydrite/feroxyhyte) occur intermittently in hyporheic-zone seeps and are enriched in As relative to Sb and contain some As(III) and Sb(III) (~30-40%). There is dynamic in-stream redox-cycling of both Sb and As, with localised S-coordinated As and Sb species re-forming in organic-rich, hyporheic sediments subject to contemporary sulfidogenesis. Sb [mainly Sb(V)] is comparatively more mobile in hyporheic and surface waters under oxic conditions, whereas As [mainly As(III)] is more mobile in hyporheic porewaters subject to reducing/sulfidogenic conditions. Repeat water-leaching of bulk-sediments confirms that Sb is proportionally more mobile than As. Mean concentrations of Sb in river water 168 km downstream from the mine are significantly (P < .05) higher than As, while Kd data indicate Sb is more strongly partitioned to the aqueous phase than As. Although the (mainly) oxic flow path of this river favours aqueous Sb mobility compared to As, localised redox-driven shifts in speciation of both elements strongly influence their respective mobility and partitioning.

10.
Environ Pollut ; 259: 113815, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31884210

RESUMO

Increasing soil contamination of arsenic (As) and antimony (Sb) is posing a serious concern to human health. Due to insufficient studies on Sb, the biogeochemical behaviour and plant uptake of Sb are assumed to be similar to that of As. As part of extensive research unravelling As and Sb biogeochemistry and plant uptake, the diffusive gradients in thin films (DGT) technique and sequential extraction procedure (SEP) were applied to evaluate As and Sb uptake by the white icicle radish (Raphanus sativus) cultivated in diluted cattle dip soils contaminated with As only and diluted mining soils contaminated with both As and Sb under agricultural conditions. Labile As and Sb in these soils measured by DGT (CDGT), soil solution (Csol), and SEP (CSEP-labile), were compared with As and Sb bioaccumulation in R. sativus tissues. Regardless of contamination sources and measurement techniques, the results showed that As was consistently more labile than Sb although total As concentrations in two soil types were lower than total Sb. Labile As in cattle dip soils was higher than that in mining soils, although there were no significant differences in soil As concentrations. The analysis of R. sativus tissues revealed that the overall As bioaccumulation was 4.5-fold higher than for Sb, and that As translocation to shoots was limited. In contrast, considerable Sb translocation to shoots was observed. The As and Sb bioaccumulation were strongly correlated with their CSEP-labile, CDGT, and Csol (R2 = 0.87-0.99), demonstrating the effectiveness of these techniques in predicting As and Sb in the white icicle radish. Compared with the cherry bell radish previously studied, the white icicle radish exhibited higher bioaccumulation factors (BAF) for Sb, but lower BAF for As, and lower translocation of As and Sb to shoots, providing understanding of how As and Sb are accumulated by radish cultivars.


Assuntos
Antimônio/metabolismo , Arsênio/metabolismo , Monitoramento Ambiental , Raphanus/metabolismo , Poluentes do Solo/metabolismo , Antimônio/química , Arsênio/química , Humanos , Solo , Poluentes do Solo/química
11.
Chemosphere ; 244: 125388, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31809928

RESUMO

Measurement of sulfide in pore waters is critical for understanding biogeochemical processes, especially within coastal sediments. Here we report the development of a new colorimetric DET (diffusive equilibration in thin films) technique for determining mm-resolution, two-dimensional sulfide distributions in sediment pore waters. This colorimetric sulfide DET method was based on the standard spectrophotometric methylene blue assay, but modified to allow quantitation of sulfide by computer imaging densitometry. The method detection and effective upper measurement limits of the optimised technique were 3.7 and 1000 µmol L-1, respectively. The optimised sulfide DET method was combined with the colorimetric iron(II) DET method to obtain co-distributions in coastal seagrass (Zostera muelleri) colonised sediment under light and dark conditions. In the dark, seagrass sediments were more reduced than in the light, with large areas being dominated by high porewater sulfide concentrations. These co-distributions were compared with those obtained using the previously described DET-DGT (diffusive gradients in thin films) method for measuring iron(II) and sulfide co-distributions. There was less overlap of iron(II) and sulfide distributions using the sulfide DET as the two DET methods are influenced most by the later hours of deployment, whereas the sulfide-DGT measurement integrates concentrations over the whole deployment period. Overlap was most apparent in very dynamic sediment zones, such as burrow wall sediments.


Assuntos
Monitoramento Ambiental/métodos , Sulfetos/análise , Poluentes Químicos da Água/análise , Colorimetria , DEET , Difusão , Compostos Ferrosos/análise , Sedimentos Geológicos , Ferro/química , Zosteraceae
12.
J Trace Elem Med Biol ; 59: 126419, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31711786

RESUMO

BACKGROUND: Trace elements are an essential requirement for human health and development and changes in trace element status have been associated with pregnancy complications such as gestational diabetes mellitus (GDM), pre-eclampsia (PE), fetal growth restriction (FGR), and preterm birth. Elemental metabolomics, which involves the simultaneous quantification and characterisation of multiple elements, could provide important insights into these gestational disorders. METHODS: This study used an Agilent 7900 inductively coupled plasma mass spectrometer (ICP-MS) to simultaneously measure 68 elements, in 166 placental cord blood samples collected from women with various pregnancy complications (control, hypertensive, PE, GDM, FGR, pre-term, and post-term birth). RESULTS: There were single element differences across gestational outcomes for elements Mg, P, Cr, Ni, Sr, Mo, I, Au, Pb, and U. Hypertensive and post-term pregnancies were significantly higher in Ni concentrations when compared to controls (control = 2.74 µg/L, hypertensive = 6.72 µg/L, post-term = 7.93 µg/L, p < 0.05), iodine concentration was significantly higher in post-term pregnancies (p < 0.05), and Pb concentrations were the lowest in pre-term pregnancies (pre-term = 2.79 µg/L, control = 4.68 µg/L, PE = 5.32 µg/L, GDM = 8.27 µg/L, p < 0.01). Further analysis was conducted using receiver operating characteristic (ROC) curves for differentiating pregnancy groups. The ratio of Sn/Pb showed the best diagnostic power in discriminating between control and pre-term birth with area under the curve (AUC) 0.86. When comparing control and post-term birth, Mg/Cr (AUC = 0.84), and Cr (AUC = 0.83) had the best diagnostic powers. In pre-term and post-term comparisons Ba was the best single element (81.5%), and P/Cu provided the best ratio (91.7%). CONCLUSIONS: This study has shown that analysis of multiple elements can enable differentiation between fetal cord blood samples from control, hypertensive, PE, GDM, FGR, pre and post-term pregnancies. This data highlights the power of elemental metabolomics and provides a basis for future gestational studies.


Assuntos
Sangue Fetal/química , Metabolômica , Oligoelementos/sangue , Oligoelementos/metabolismo , Adulto , Feminino , Sangue Fetal/metabolismo , Humanos , Masculino , Gravidez , Adulto Jovem
13.
Environ Sci Process Impacts ; 21(12): 2128-2140, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31681920

RESUMO

Determining inorganic nutrient profiles to support understanding of nitrogen transformations in stream sediments is challenging, due to nitrification and denitrification being confined to particular conditions in potentially heterogeneous sediment influenced by benthic microalgae, rooted aquatic plants and/or diel light cycles. The diffusive gradients in thin films (DGT) and diffusive equilibration in thin films (DET) techniques allow in situ determination of porewater concentration profiles, and distributions for some solutes. In this study, DGT, DET and conventional porewater extraction (sectioning and centrifugation) methods were compared for ammonium and nitrate in stream sediments under light and dark conditions. Two-dimensional distributions of Fe(ii) and PO4-P were also provided to indicate the degree of spatial and temporal heterogeneity in sediment porewater, which can explain the sources and sinks of ammonium at various depths in the sediments. Although the conventional porewater extraction method consistently measured higher NH4-N concentrations than the DGT and DET techniques, the study showed that the DET measurements were the most reliable indicator of porewater NH4-N concentrations, with the DGT data being usefully supplementary. However, a large proportion of the NO3-N concentrations measured by DGT and DET were close to or below the method detection limits. Therefore, further development of these techniques is required to reduce the blanks and detection limits to allow natural low sediment porewater NO3-N concentrations to be accurately monitored using DGT and DET. The study indicated that benthic microalgae had direct and indirect influences on porewater nutrient distributions over light-dark cycles. Overall, DGT and DET techniques can be useful for monitoring porewater nutrient concentrations and profiles and for determining how biological processes drive changes in sediment nutrient concentrations and distributions.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Rios/química , Ciclo Hidrológico , Poluentes Químicos da Água/análise , Amônia/análise , Difusão , Nitratos/análise
15.
ISME J ; 13(3): 707-719, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30353038

RESUMO

Seagrasses thrive in anoxic sediments where sulphide can accumulate to phytotoxic levels. So how do seagrasses persist in this environment? Here, we propose that radial oxygen loss (ROL) from actively growing root tips protects seagrasses from sulphide intrusion not only by abiotically oxidising sulphides in the rhizosphere of young roots, but also by influencing the abundance and spatial distribution of sulphate-reducing and sulphide-oxidising bacteria. We used a novel multifaceted approach combining imaging techniques (confocal fluorescence in situ hybridisation, oxygen planar optodes, and sulphide diffusive gradients in thin films) with microbial community profiling to build a complete picture of the microenvironment of growing roots of the seagrasses Halophila ovalis and Zostera muelleri. ROL was restricted to young root tips, indicating that seagrasses will have limited ability to influence sulphide oxidation in bulk sediments. On the microscale, however, ROL corresponded with decreased abundance of potential sulphate-reducing bacteria and decreased sulphide concentrations in the rhizosphere surrounding young roots. Furthermore, roots leaking oxygen had a higher abundance of sulphide-oxidising cable bacteria; which is the first direct observation of these bacteria on seagrass roots. Thus, ROL may enhance both abiotic and bacterial sulphide oxidation and restrict bacterial sulphide production around vulnerable roots, thereby helping seagrasses to colonise sulphide-rich anoxic sediments.


Assuntos
Bactérias/classificação , Hydrocharitaceae/microbiologia , Oxigênio/metabolismo , Sulfetos/metabolismo , Zosteraceae/microbiologia , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/química , Hydrocharitaceae/fisiologia , Oxirredução , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Rizosfera , Estresse Fisiológico , Zosteraceae/fisiologia
16.
Sci Total Environ ; 654: 284-291, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445328

RESUMO

Metals and metalloids are priority contaminants due to their non-degradable and bioaccumulative nature, and their ability to regulate and perturb diverse physiological processes in various species. Metal(loid)s are known to cause oxidative stress through production of reactive oxygen species (ROS), thus related endpoints like lipid peroxidation (LPO) have received considerable attention as biomarkers of exposure. However, the implications of metal(loid) toxicity including LPO on actual lipid profiles of species inhabiting contaminated systems are poorly understood. Here we applied Nuclear Magnetic Resonance (NMR) spectroscopy for untargeted lipidomics of mosquitofish (Gambusia holbrooki) collected from reference and metal(loid)-contaminated wetlands. We measured a range of trace elements in water and fish using inductively coupled plasma - mass spectrometry (ICP-MS), and interpreted site differences in the lipid profiles of mosquitofish in the context of known physiological responses to sub-lethal metal(loid) exposure. Results indicate deregulation of cellular membrane lipids (i.e., glycerophospholipids, cholesterol and sphingolipids) and increased energy storage molecules (i.e., triacylglycerols and fatty acids) in fish from the contaminated wetland. These responses are consistent with the recognised induction of oxidative stress pathways in organisms exposed to metal(loid)s and could also be symptomatic of mitochondrial dysfunction and endocrine disruption. It is difficult to attribute metal(loid)s as the sole factor causing differences between wetlands, and a more controlled experimental approach is therefore warranted to further explore mechanistic pathways. Nevertheless, our study highlights the benefits of untargeted 1H NMR-based lipidomics as a relatively fast and simple approach for field-scale assessment and monitoring of organisms inhabiting metal(loid) contaminated environments.


Assuntos
Antimônio/análise , Arsênio/análise , Membrana Celular/metabolismo , Ciprinodontiformes/metabolismo , Metabolismo Energético/efeitos dos fármacos , Monitoramento Ambiental/métodos , Metabolismo dos Lipídeos/efeitos dos fármacos , Poluentes Químicos da Água/análise , Áreas Alagadas , Animais , Antimônio/toxicidade , Lipidoses , New South Wales , Ressonância Magnética Nuclear Biomolecular , Poluentes Químicos da Água/toxicidade , Qualidade da Água
17.
Environ Sci Process Impacts ; 20(9): 1285-1296, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30175344

RESUMO

In undisturbed, metal-contaminated marine sediments, porewater metal concentrations are generally low due to their associations with strong binding phases such as organic matter, Fe/Mn (oxy)hydroxides and sulfides. Bioturbating fauna can alter redox conditions and, therefore, metal binding, potentially leading to increased metal bioavailability and subsequent toxicity to inhabiting organisms. Here we assessed the impacts of bioturbation (by bivalves and large amphipod species) on sediment biogeochemistry, metal bioaccumulation and toxicity to a smaller amphipod species in a metal contaminated sediment with low and high acid volatile sulfide (AVS) concentrations. Active bioturbation lowered metal toxicity to reproduction in the sediment with low-AVS (from 90% toxic (non-bioturbated) to 50% toxic (bioturbated)). This corresponded with lower dissolved metal concentrations in the overlying water column and lower metal bioaccumulation. Conversely, toxicity increased due to bioturbation in the sediment with high-AVS (40% toxic (non-bioturbated) to 80% toxic (bioturbated)), coinciding with sulfide oxidation, metal release and greater metal bioaccumulation. The results indicate that the AVS-SEM paradigm (commonly used to estimate the risks of adverse effects to benthic organisms in metal-contaminated sediments) may result in incorrect assessment outcomes in cases where bioturbating organisms rework and oxidize the sediment, or for those sediments where AVS has accumulated due to the inability of larger bioturbating benthic organisms to establish populations.


Assuntos
Anfípodes/efeitos dos fármacos , Bivalves/fisiologia , Metais Pesados/toxicidade , Sulfetos/química , Poluentes Químicos da Água/toxicidade , Anfípodes/metabolismo , Animais , Disponibilidade Biológica , Feminino , Sedimentos Geológicos/química , Masculino , Metais Pesados/metabolismo , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
18.
Environ Pollut ; 243(Pt B): 1096-1105, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30253300

RESUMO

There is considerable interest in applying omics techniques, which have proven extremely valuable for laboratory-based toxicology studies, towards field-scale ecotoxicology and environmental monitoring. Concerns that confounding factors in natural ecosystems may exacerbate variability in omics datasets must be addressed to validate the transition from laboratory to field. This study explores how temporal variability related to seasonal and climatic trends influence qualitative and quantitative metabolomics outcomes, in fish from reference and metal(loid)-polluted wetlands in Australia. Female mosquitofish (Gambusia holbrooki) were sampled on two separate occasions, from a rehabilitated tailings wetland at the site of historic antimony (Sb) processing and a reference wetland with comparable water quality. The first sampling coincided with greater monthly rainfall and colder water temperature, whereas the second sampling was drier and water was warmer. Despite temporal changes and associated differences in metal(loid) concentrations, site differences in metabolite profiles were qualitatively very similar between sampling events. However, quantitative differences were observed, with a greater number of significantly altered metabolites identified during the second sampling event, which coincided with greater metal(loid) concentrations in both water and fish. The majority of identified metabolites were elevated in fish from the contaminated wetland, but with notable decreases in several metabolites that are known to play a role in various aspects of metal(loid) binding, detoxification and excretion. Specifically, decreased aspartate, histidine, myo-inositol, taurine and choline were observed in fish from the contaminated wetland, and may therefore represent a metabolite suite that is broadly indicative of metal toxicity. Quantitative differences between sampling events are suggestive of a dose-response relationship observable at the cellular level which, if harnessed, may be useful for assigning levels of concern based on the degree of change in a multi-parameter set of metabolite biomarkers.


Assuntos
Monitoramento Ambiental/métodos , Metais/toxicidade , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Animais , Antimônio , Austrália , Colina , Temperatura Baixa , Ciprinodontiformes/fisiologia , Ecossistema , Ecotoxicologia , Feminino , Imageamento por Ressonância Magnética , Metabolômica , Metais/análise , Reprodutibilidade dos Testes , Alimentos Marinhos , Temperatura , Água , Poluentes Químicos da Água/análise , Qualidade da Água
19.
Environ Sci Process Impacts ; 20(9): 1244-1253, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30074600

RESUMO

Hypersaline sediments derived from poor land management or the decommissioning of large-scale salt production contribute to the long-term degradation of aquatic environments. Obstacles impeding remediation of these environments include salt crusts restricting benthic recolonisation, hypersalinity-induced toxicity to organisms, and disruption of biogeochemical cycles. Remediation often focuses on engineered solutions, despite sediment-biota interactions often playing a crucial role in improving long-term remediation and restoration of contaminated areas. The presence of extensive bioturbating communities can assist with flushing of excess salt ions, and the reduction of excess nutrients. Here we investigated the tolerance limits that may impede benthic organism recolonisation of hypersaline sediments. Bioassays on dilutions of a hypersaline sediment (∼400 psu (practical salinity units)) and extracted porewaters were used to assess the acute and chronic tolerances of a range of benthic species. Amphipod, copepod and shrimp species were the least tolerant to hypersalinity; bivalve and gastropod species displayed intermediate tolerance; and crab and polychaete species were the most tolerant, i.e. able to endure prolonged exposure in waters at ≥60 psu. Avoidance tests found many species avoid salinities >50 psu. Short-term endurance tests (time to death) indicated thresholds in the 52-70 psu range through tidal cycle exposures of 6 h (semi-diurnal), 12 h (diurnal), 24 h and 48 h (prolonged). Amphipod reproduction and shrimp larvae development bioassays had EC30's of 46 psu and EC50's in the 54-65 psu range, indicating potential to maintain populations at salinities up to 65 psu. These results will assist in designing successful monitored natural recovery strategies for salt ponds that may supplement the initial engineered approaches.


Assuntos
Crustáceos/crescimento & desenvolvimento , Recuperação e Remediação Ambiental , Salinidade , Cloreto de Sódio/toxicidade , Anfípodes , Animais , Bivalves , Braquiúros , Copépodes , Sedimentos Geológicos/química , Lagoas , Reprodução , Testes de Toxicidade
20.
Environ Sci Technol ; 52(3): 1118-1127, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29303570

RESUMO

Antimony (Sb) and arsenic (As) are priority environmental contaminants that often co-occur at mining-impacted sites. Despite their chemical similarities, Sb mobility in waterlogged sediments is poorly understood in comparison to As, particularly across the sediment-water interface (SWI) where changes can occur at the millimeter scale. Combined diffusive gradients in thin films (DGT) and diffusive equilibration in thin films (DET) techniques provided a high resolution, in situ comparison between Sb, As, and iron (Fe) speciation and mobility across the SWI in contaminated freshwater wetland sediment mesocosms under an oxic-anoxic-oxic transition. The shift to anoxic conditions released Fe(II), As(III), and As(V) from the sediment to the water column, consistent with As release being coupled to the reductive dissolution of iron(III) (hydr)oxides. Conversely, Sb(III) and Sb(V) effluxed to the water column under oxic conditions and fluxed into the sediment under anoxic conditions. Porewater DGT-DET depth profiles showed apparent decoupling between Fe(II) and Sb release, as Sb was primarily mobilized across the SWI under oxic conditions. Solid-phase X-ray absorption spectroscopy (XAS) revealed the presence of an Sb(III)-S phase in the sediment that increased in proportion with depth and the transition from oxic to anoxic conditions. The results of this study showed that Sb mobilization was decoupled from the Fe cycle and was, therefore, more likely linked to sulfur and/or organic carbon (e.g., most likely authigenic antimony sulfide formation or Sb(III) complexation by reduced organic sulfur functional groups).


Assuntos
Arsênio , Antimônio , Compostos Férricos , Sedimentos Geológicos , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA