Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hand Surg Rehabil ; 43(2): 101636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38215880

RESUMO

Ultrasound elastography is a recently developed method for accurate measurement of soft tissue stiffness in addition to the clinician's subjective evaluation. The present review briefly describes the ultrasound elastography techniques and outlines clinical applications for tendon, muscle, nerve, skin and other soft tissues of the hand and upper limb. Strain elastography provides a qualitative evaluation of the stiffness, and shear-wave elastography generates quantitative elastograms superimposed on a B-mode image. The stiffness in degenerative tendinopathy and/or tendon injury was significantly lower than in a normal tendon in several studies. Elastography is also a reliable method to evaluate functional muscle activity, compared to conventional surface electromyography. The median nerve is consistently stiffer in patients with carpal tunnel syndrome than in healthy subjects, on whatever ultrasound elastography technique. Elastography distinguishes normal skin from scars and can be used to evaluate scar severity and treatment. Elastography has huge clinical applications in musculoskeletal tissues. Continued development of systems and increased training of clinicians will expand our knowledge of elastography and its clinical applications in the future.


Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Extremidade Superior/diagnóstico por imagem , Extremidade Superior/fisiopatologia , Mãos/diagnóstico por imagem , Mãos/fisiopatologia , Síndrome do Túnel Carpal/diagnóstico por imagem , Síndrome do Túnel Carpal/fisiopatologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Tendões/diagnóstico por imagem , Traumatismos dos Tendões/diagnóstico por imagem , Traumatismos dos Tendões/fisiopatologia , Cicatriz/diagnóstico por imagem , Cicatriz/fisiopatologia
2.
Sci Rep ; 13(1): 815, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646734

RESUMO

Changes in the mechanical properties (i.e., stiffness) of soft tissues have been linked to musculoskeletal disorders, pain conditions, and cancer biology, leading to a rising demand for diagnostic methods. Despite the general availability of different stiffness measurement tools, it is unclear as to which are best suited for different tissue types and the related measurement depths. The study aimed to compare different stiffness measurement tools' (SMT) reliability on a multi-layered phantom tissue model (MPTM). A polyurethane MPTM simulated the four layers of the thoracolumbar region: cutis (CUT), subcutaneous connective tissue (SCT), fascia profunda (FPR), and erector spinae (ERS), with varying stiffness parameters. Evaluated stiffness measurement tools included Shore Durometer, Semi-Electronic Tissue Compliance Meter (STCM), IndentoPRO, MyotonPRO, and ultrasound imaging. Measurements were made by two independent, blinded examiners. Shore Durometer, STCM, IndentoPRO, and MyotonPRO reliably detected stiffness changes in three of the four MPTM layers, but not in the thin (1 mm thick) layer simulating FPR. With ultrasound imaging, only stiffness changes in layers thicker than 3 mm could be measured reliably. Significant correlations ranging from 0.70 to 0.98 (all p < 0.01) were found. The interrater reliability ranged from good to excellent (ICC(2,2) = 0.75-0.98). The results are encouraging for researchers and clinical practitioners as the investigated stiffness measurement tools are easy-to-use and comparatively affordable.


Assuntos
Músculo Esquelético , Coluna Vertebral , Fáscia , Imagens de Fantasmas , Reprodutibilidade dos Testes , Pele , Ultrassonografia
3.
J Biomed Sci Eng ; 15(5): 140-156, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36507464

RESUMO

Recent studies have demonstrated a new role for Klf10, a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of Klf10 in the functional and structural properties of this brain region. In vivo (magnetic resonance imaging and localized spectroscopy, behavior analysis) and in vitro (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and Klf10 knockout (KO) mice. Histology analysis and assessment of locomotion revealed no significant difference in Klf10 KO mice. Diffusion and texture results obtained using MRI revealed structural changes in KO mice characterized as defects in the organization of axons. These modifications may be explained by differences in the levels of specific metabolites (myo-inositol, lactate) within the KO cerebellum. Loss of Klf10 expression also led to changes in mitochondrial activity as reflected by a significant increase in the activity of citrate synthase, complexes I and IV. In summary, this study has provided evidence that Klf10 plays an important role in energy production and mitochondrial function in the cerebellum.

4.
Metabolites ; 12(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35736488

RESUMO

The transcription factor Krüppel-like factor 10 (Klf10), also known as Tieg1 for TGFß (Inducible Early Gene-1) is known to control numerous genes in many cell types that are involved in various key biological processes (differentiation, proliferation, apoptosis, inflammation), including cell metabolism and human disease. In skeletal muscle, particularly in the soleus, deletion of the Klf10 gene (Klf10 KO) resulted in ultrastructure fiber disorganization and mitochondrial metabolism deficiencies, characterized by muscular hypertrophy. To determine the metabolic profile related to loss of Klf10 expression, we analyzed blood and soleus tissue using UHPLC-Mass Spectrometry. Metabolomics analyses on both serum and soleus revealed profound differences between wild-type (WT) and KO animals. Klf10 deficient mice exhibited alterations in metabolites associated with energetic metabolism. Additionally, chemical classes of aromatic and amino-acid compounds were disrupted, together with Krebs cycle intermediates, lipids and phospholipids. From variable importance in projection (VIP) analyses, the Warburg effect, citric acid cycle, gluconeogenesis and transfer of acetyl groups into mitochondria appeared to be possible pathways involved in the metabolic alterations observed in Klf10 KO mice. These studies have revealed essential roles for Klf10 in regulating multiple metabolic pathways whose alterations may underlie the observed skeletal muscle defects as well as other diseases.

5.
Muscle Nerve ; 64(6): 765-769, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34486132

RESUMO

INTRODUCTION/AIMS: Klf10 is a member of the Krüppel-like family of transcription factors, which is implicated in mediating muscle structure (fiber size, organization of the sarcomere), muscle metabolic activity (respiratory chain), and passive force. The aim of this study was to further characterize the roles of Klf10 in the contractile properties of skeletal muscle fibers. METHODS: Fifty-two single fibers were extracted from female wild-type (WT) and Klf10 knockout (KO) oxidative (soleus) and glycolytic (extensor digitorum longus [EDL]) skinned muscles. Each fiber was immersed successively in relaxing (R), washing (W), and activating (A) solutions. Calcium was included in the activating solution to induce a maximum contraction of the fiber. The maximum force (Fmax ) was measured and normalized to the cross-sectional area to obtain the maximum stress (Stressmax ). After a steady state in contraction was reached, a quick stretch-release was performed; the force at the maximum stretch (Fstretch ) was measured and the stiffness was assessed. RESULTS: Deletion of the Klf10 gene induced changes in the contractile parameters (Fmax , Stressmax , Stiffness), which were lower and higher for soleus and EDL fibers compared with littermates, respectively. These measurements also revealed changes in the proportion and resistance of attached cross-bridges. DISCUSSION: Klf10 plays a major role in the homeostasis of the contractile behavior of skeletal muscle fibers in a muscle fiber type-specific manner. These findings further implicate important roles for Klf10 in skeletal muscle function and shed new light on understanding the molecular processes regulating the contractility of skeletal muscle fibers.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Animais , Fatores de Transcrição de Resposta de Crescimento Precoce/análise , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Feminino , Fatores de Transcrição Kruppel-Like/análise , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético , Fatores de Transcrição/genética
6.
Ultrasound Med Biol ; 47(11): 3181-3195, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34373137

RESUMO

Controlled attenuation parameter (CAP) is a measurement of ultrasound attenuation used to assess liver steatosis non-invasively. However, the standard method has some limitations. This study assessed the performance of a new CAP method by ex vivo and in vivo assessments. The major difference with the new method is that it uses ultrasound data continuously acquired during the imaging phase of the FibroScan examination. Seven reference tissue-mimicking phantoms were used to test the performance. In vivo performance was assessed in two cohorts (in total 195 patients) of patients using magnetic resonance imaging proton density fat fraction (MRI-PDFF) as a reference. The precision of CAP was improved by more than 50% on tissue-mimicking phantoms and 22%-41% in the in vivo cohort studies. The agreement between both methods was excellent, and the correlation between CAP and MRI-PDFF improved in both studies (0.71 to 0.74; 0.70 to 0.76). Using MRI-PDFF as a reference, the diagnostic performance of the new method was at least equal or superior (area under the receiver operating curve 0.889-0.900, 0.835-0.873). This study suggests that the new continuous CAP method can significantly improve the precision of CAP measurements ex vivo and in vivo.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Curva ROC , Ultrassonografia
7.
Artigo em Inglês | MEDLINE | ID: mdl-33362876

RESUMO

Noninvasive imaging techniques are increasingly used for monitoring muscle behavior in mice. However, muscle is a complex tissue that exhibits different properties under passive and active conditions. In addition to structural properties, it is also important to analyze functional characteristics. At present, such information can be obtained with ultrasound elastography. However, this technique is poorly used for small rodent models (mice and gerbils). Thus, this study aims at establish referent hindlimb muscle data, and experimental guidelines, for wild-type (WT) control mice as well as the TIEG1 knockout (KO) mouse model that is known to exhibit skeletal muscle defects. Ultrasound was performed with the Aixplorer machine using a SLH 20-6 linear transducer probe (2.8 cm footprint). A region of interest (ROI) was placed around a superficial group of muscles. Subsequently, from the B-mode image, a classification of all the muscles and ultrasound biomarkers such as echo intensity and texture anisotropy have been determined. The influence of the gain setting (from 40% to 70%) was analyzed on these parameters. Moreover, the elasticity (E) was also measured within the ROI. This study provides a suitable methodology for collecting experimental data: 1) the correct range of gain (between 50% and 70%) to apply for the ultrasound measurement of muscle structure, 2) the structural and functional referent data for a group of healthy muscles, 3) the gray scale index, the texture anisotropy and the elasticity (ETIEG1 KO = 36.1 ± 10.3 kPa, EWT = 44.4 ± 13.4 kPa) parameters, which were obtained for a group of muscles as a function of genotype.

8.
Acta Physiol (Oxf) ; 228(3): e13394, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31560161

RESUMO

AIM: Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS: We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS: Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION: Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Metaboloma , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Succinato Desidrogenase/metabolismo , Fatores de Transcrição/genética
9.
Sci Rep ; 9(1): 7733, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118478

RESUMO

At present, there is a lack of well-validated protocols that allow for the analysis of the mechanical properties of muscle and tendon tissues. Further, there are no reports regarding characterization of mouse skeletal muscle and tendon mechanical properties in vivo using elastography thereby limiting the ability to monitor changes in these tissues during disease progression or response to therapy. Therefore, we sought to develop novel protocols for the characterization of mechanical properties in musculotendinous tissues using atomic force microscopy (AFM) and ultrasound elastography. Given that TIEG1 knockout (KO) mice exhibit well characterized defects in the mechanical properties of skeletal muscle and tendon tissue, we have chosen to use this model system in the present study. Using TIEG1 knockout and wild-type mice, we have devised an AFM protocol that does not rely on the use of glue or chemical agents for muscle and tendon fiber immobilization during acquisition of transversal cartographies of elasticity and topography. Additionally, since AFM cannot be employed on live animals, we have also developed an ultrasound elastography protocol using a new linear transducer, SLH20-6 (resolution: 38 µm, footprint: 2.38 cm), to characterize the musculotendinous system in vivo. This protocol allows for the identification of changes in muscle and tendon elasticities. Such innovative technological approaches have no equivalent to date, promise to accelerate our understanding of musculotendinous mechanical properties and have numerous research and clinical applications.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Microscopia de Força Atômica/métodos , Músculo Esquelético/fisiologia , Tendões/fisiologia , Tendão do Calcâneo/fisiologia , Tendão do Calcâneo/ultraestrutura , Animais , Proteínas de Ligação a DNA/deficiência , Módulo de Elasticidade , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Tendões/ultraestrutura , Fatores de Transcrição/deficiência
10.
Muscle Nerve ; 55(3): 410-416, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27421714

RESUMO

INTRODUCTION: Transforming growth factor-beta (TGF-ß)-inducible early gene-1 (TIEG1) is a transcription factor that is highly expressed in skeletal muscle. The purpose of this study was to characterize the structural properties of both fast-twitch (EDL) and slow-twitch (soleus) muscles in the hindlimb of TIEG1-deficient (TIEG1-/- ) mice. METHODS: Ten slow and 10 fast muscles were analyzed from TIEG1-/- and wild-type (WT) mice using MRI texture (MRI-TA) and histological analyses. RESULTS: MRI-TA could discriminate between WT slow and fast muscles. Deletion of the TIEG1 gene led to changes in the texture profile within both muscle types. Specifically, muscle isolated from TIEG1-/- mice displayed hypertrophy, hyperplasia, and a modification of fiber area distribution. CONCLUSIONS: We demonstrated that TIEG1 plays an important role in the structural properties of skeletal muscle. This study further implicates important roles for TIEG1 in the development of skeletal muscle and suggests that defects in TIEG1 expression and/or function may be associated with muscle disease. Muscle Nerve 55: 410-416, 2017.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Membro Posterior/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Componente Principal , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
11.
PLoS One ; 11(10): e0164566, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27736981

RESUMO

As transforming growth factor (TGF)-ß inducible early gene-1 is highly expressed in skeletal muscle, the effect of TIEG1 gene deletion on the passive mechanical properties of slow and fast twitch muscle fibers was analyzed. Twenty five muscle fibers were harvested from soleus (Sol) and extensor digitorum longus (EDL) muscles from TIEG1-/- (N = 5) and control (N = 5) mice. Mechanical tests were performed on fibers and the dynamic and static stresses were measured. A viscoelastic Hill model of 3rd order was used to fit the experimental relaxation test data. In parallel, immunohistochemical analyses were performed on three serial transverse sections to detect the myosin isoforms within the slow and fast muscles. The percentage and the mean cross sectional area of each fiber type were calculated. These tests revealed a significant increase in the mechanical stress properties for the TIEG1-/- Sol fibers while a significant decrease appeared for the TIEG1-/- EDL fibers. Hill model tracked the shape of the experimental relaxation curve for both genotypes and both fiber types. Immunohistochemical results showed hypertrophy of all fiber types for TIEG1-/- muscles with an increase in the percentage of glycolytic fibers (IIX, and IIB) and a decrease of oxidative fibers (I, and IIA). This study has provided new insights into the role of TIEG1, known as KLF10, in the functional (SoltypeI: more resistant, EDLtypeIIB: less resistant) and morphological (glycolytic hypertrophy) properties of fast and slow twitch skeletal muscles. Further investigation at the cellular level will better reveal the role of the TIEG1 gene in skeletal muscle tissue.


Assuntos
Proteínas de Ligação a DNA/genética , Deleção de Genes , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Músculo Esquelético/fisiopatologia , Miosinas de Músculo Esquelético/metabolismo , Fatores de Transcrição/genética , Animais , Fenômenos Biomecânicos , Feminino , Hipertrofia , Camundongos , Modelos Biológicos , Músculo Esquelético/patologia , Estresse Mecânico
12.
J Magn Reson Imaging ; 43(6): 1423-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26605873

RESUMO

PURPOSE: To measure the viscoelastic properties of passive thigh muscles using multifrequency magnetic resonance elastography (MMRE) and rheological models. MATERIALS AND METHODS: Four muscles in five volunteers underwent MMRE tests set up inside a 1.5T magnetic resonance imaging (MRI) scanner. Compression excitation was generated with a driver attached around the thigh, and waves were generated at 70, 90, and 110 Hz. In vivo experimental viscoelastic parameters (G(ω) = G' + i G″) were extracted from the wavelength and attenuation measurements along a local profile in the direction of the wave's displacement. The data-processing method was validated on a phantom using MMRE and RheoSpectris tests. The complex modulus (G(ω)) related to elasticity (µ) and viscosity (η) was then determined using four rheological models. RESULTS: Zener was the best-fit model (χ ∼0.35 kPa) for the rheological parameters of all muscles. Similar behaviors for the elastic components for each muscle were found for the Zener and springpot models. The gracilis muscle showed higher elastic values (about 2 kPa) in both models compared to other muscles. The α-values for each muscle was equivalent to the ratio G″/G' at 90 Hz. CONCLUSION: MMRE tests associated with data processing demonstrated that the complex shear modulus G(ω) of passive muscles could be analyzed using two rheological models. The viscoelastic data can be used as a reference for future assessment of muscular dysfunction. J. Magn. Reson. Imaging 2015. J. Magn. Reson. Imaging 2016;43:1423-1433.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Adulto , Simulação por Computador , Módulo de Elasticidade/fisiologia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resistência ao Cisalhamento/fisiologia , Estresse Mecânico , Coxa da Perna/diagnóstico por imagem , Coxa da Perna/fisiologia , Viscosidade
13.
J Biomech ; 48(15): 4081-4086, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26602374

RESUMO

The mechanical behavior of muscle tissue is an important field of investigation with different applications in medicine, car crash and sport, for example. Currently, few in vivo imaging techniques are able to characterize the mechanical properties of muscle. Thus, this study presents an in vivo method to identify a hyperelatic behavior from a displacement field measured with ultrasound and Digital Image Correlation (DIC) techniques. This identification approach was composed of 3 inter-dependent steps. The first step was to perform a 2D MRI acquisition of the thigh in order to obtain a manual segmentation of muscles (quadriceps, ischio, gracilis and sartorius) and fat tissue, and then develop a Finite Element model. In addition, a Neo-Hookean model was chosen to characterize the hyperelastic behavior (C10, D) in order to simulate a displacement field. Secondly, an experimental compression device was developed in order to measure the in vivo displacement fields in several areas of the thigh. Finally, an inverse method was performed to identify the C10 and D parameters of each soft tissue. The identification procedure was validated with a comparison with the literature. The relevance of this study was to identify the mechanical properties of each investigated soft tissues.


Assuntos
Músculo Quadríceps/fisiologia , Adulto , Fenômenos Biomecânicos , Elasticidade , Análise de Elementos Finitos , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Biológicos , Músculo Esquelético/fisiologia , Coxa da Perna/fisiologia
14.
PLoS One ; 10(9): e0138873, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397730

RESUMO

BACKGROUND: Pathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest. METHODS: Twenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed. RESULTS: The gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (µ_Gr = 6.15 ± 0.45 kPa, µ_ Sr = 5.15 ± 0.19 kPa, and µ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from µ_ RF = 3.91 ± 0.16 kPa to µ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (µ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested. CONCLUSION: The different elasticities measured between the tissues may be due to variations in the muscles' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.


Assuntos
Músculo Esquelético/fisiologia , Adulto , Módulo de Elasticidade , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Adulto Jovem
15.
Artigo em Inglês | MEDLINE | ID: mdl-23947476

RESUMO

Magnetic resonance elastography (MRE), based on shear wave propagation generated by a specific driver, is a non-invasive exam performed in clinical practice to improve the liver diagnosis. The purpose was to develop a finite element (FE) identification method for the mechanical characterisation of phantom mimicking soft tissues investigated with MRE technique. Thus, a 3D FE phantom model, composed of the realistic MRE liver boundary conditions, was developed to simulate the shear wave propagation with the software ABAQUS. The assumptions of homogeneity and elasticity were applied to the FE phantom model. Different ranges of mesh size, density and Poisson's ratio were tested in order to develop the most representative FE phantom model. The simulated wave displacement was visualised with a dynamic implicit analysis. Subsequently, an identification process was performed with a cost function and an optimisation loop provided the optimal elastic properties of the phantom. The present identification process was validated on a phantom model, and the perspective will be to apply this method on abdominal tissues for the set-up of new clinical MRE protocols that could be applied for the follow-up of the effects of treatments.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Análise de Elementos Finitos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Imagens de Fantasmas , Resistência ao Cisalhamento , Algoritmos , Fenômenos Biomecânicos , Elasticidade , Humanos , Software
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3827-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26737128

RESUMO

The understanding of the mechanical behavior of the muscle tissue is an important field of investigation with different applications in medicine, car crash and sport. Currently, few in vivo imaging techniques are able to characterize the mechanical properties of muscle. Thus, the development of an in vivo identification method is a current thematic where the displacement field measurements could be used for further interpretations. This study aims at presenting the displacement fields measured in the anterior, posterior, lateral and medial parts of the thigh muscles using ultrasound and Digital Image Correlation (DIC) techniques. The results of the displacement field measurements confirmed and are correlated with the ultrasound observations.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Músculo Quadríceps/diagnóstico por imagem , Adulto , Humanos , Masculino , Coxa da Perna/diagnóstico por imagem , Ultrassonografia
17.
Artigo em Inglês | MEDLINE | ID: mdl-26737839

RESUMO

Magnetic Resonance Elastography (MRE) is a non invasive technique based on the propagation of shear waves in soft tissues providing the quantification of the mechanical properties [1]. MRE was successfully applied to healthy and pathological muscles. However, the MRE muscle methods must be further improved to characterize the deep muscles. A way will be to develop phantom mimicking the muscle behavior in order to set up new MRE protocol. Thus, the purpose of this study is to create a phantom composed of a similar skeletal muscle architecture (fiber, aponorosis) and equivalent elastic properties as a function of the muscle state (passive or active). Two homogeneous phantoms were manufactured with different concentrations of plastisol to simulate the elastic properties in relaxed (50% of plastisol) and contracted (70% of plastisol) muscle conditions. Moreover, teflon tubing pipes (D = 0.9 mm) were thread in the upper part of the phantom (50%) to represent the muscle fibers and a plastic sheet (8 × 15 cm) was also included in the middle of the phantom to mimic the aponeurosis structure. Subsequently, MRE tests were performed with two different pneumatic drivers, tube and round, (f = 90Hz) to analyze the effect of the type of driver on the wave propagation. Then, the wavelength was measured from the phase images to obtain the elastic properties (shear modulus). Both phantoms revealed elastic properties which were in the same range as in vivo muscle in passive (µ(50%) = 2.40 ± 0.18 kPa ) and active (6.24 ± 0.21 kPa) states. The impact of the type of driver showed higher values (about 1.2kPa) with the tube. The analysis of the wave behavior revealed a sliding along the plastic sheet as it was observed for in vivo muscle study. The wave was also sensitive to the presence of the fibers where gaps were identified. The present study demonstrates the ability of the phantom to mimic the structural and functional properties of the muscle.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/fisiologia , Imagens de Fantasmas , Elasticidade , Desenho de Equipamento , Fibrose/patologia , Humanos , Processamento de Imagem Assistida por Computador , Movimento , Plásticos/química , Politetrafluoretileno , Resistência ao Cisalhamento , Software , Estresse Mecânico , Coxa da Perna
18.
J Biomech Eng ; 136(11)2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25188787

RESUMO

The purpose of this study was to develop an inverse method, coupling imaging techniques with numerical methods, to identify the muscle mechanical behavior. A finite element model updating (FEMU) was developed in three main interdependent steps. First, a 2D FE modeling, parameterized by a Neo-Hookean behavior (C10 and D), was developed from a segmented thigh muscle 1.5T MRI (magnetic resonance imaging). Thus, a displacement field was simulated for different static loadings (contention, compression, and indentation). Subsequently, the optimal mechanical test was determined from a sensitivity analysis. Second, ultrasound parameters (gain, dynamic, and frequency) were optimized on the thigh muscles in order to apply the digital image correlation (DIC), allowing the measurement of an experimental displacement field. Third, an inverse method was developed to identify the Neo-Hookean parameters (C10 and D) by performing a minimization of the distance between the simulated and measured displacement fields. To replace the experimental data and to quantify the identification error, a numerical example was developed. The result of the sensitivity analysis showed that the compression test was more adapted to identify the Neo-Hookean parameters. Ultrasound images were recorded with a frequency, gain, and dynamic of 9 MHz, 34 dB, 42 dB, respectively. In addition, the experimental noise on displacement field measurement was estimated to be 0.2 mm. The identification performed on the numerical example revealed a low error for the C10 (<3%) and D (<7%) parameters with the experimental noise. This methodology could have an impact in the scientific and medical fields. A better knowledge of the muscle behavior will help to follow treatment and to ensure accurate medical procedures during the use of robotic devices.


Assuntos
Análise de Elementos Finitos , Extremidade Inferior , Teste de Materiais/métodos , Fenômenos Mecânicos , Músculos , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Músculos/diagnóstico por imagem , Ultrassonografia
19.
Muscle Nerve ; 47(6): 903-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23512304

RESUMO

INTRODUCTION: Characterization of muscle elasticity will improve the diagnosis and treatment of muscle disorders. The purpose is to compare the use of magnetic resonance elastography (MRE) and ultrasound elastography (USE) techniques to elucidate the MRE cartography of thigh muscles. METHODS: Both elastography techniques were performed on 5 children and 7 adults. Quantitative (MRE) and qualitative (USE) cartographies of muscle elasticity, as a function of muscle state and age, were obtained with shear waves and manual compression of the ultrasound probe, respectively. RESULTS: Similar cartographies of muscle elasticity were obtained with the 2 methods. The combination of both imaging techniques results in an improved depiction of the physiological changes associated with muscle state and age. CONCLUSIONS: This study demonstrates the feasibility of MRE for use as a clinical tool in the characterization of neuromuscular pathologies and for assessing the efficacy of specific treatments for muscle related diseases.


Assuntos
Elasticidade/fisiologia , Músculo Quadríceps/fisiologia , Adulto , Criança , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Quadríceps/diagnóstico por imagem , Adulto Jovem
20.
J Magn Reson Imaging ; 38(2): 422-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23293060

RESUMO

PURPOSE: To analyze the relevance of the viscosity measurement as a liver diagnostic marker. MATERIALS AND METHODS: To determine the level of fibrosis, a Fibroscan test was performed on 40 subjects (10 healthy volunteers and 30 patients). Subsequently, multifrequency magnetic resonance elastography (MMRE) tests were made with a pneumatic driver at 60, 70, and 80 Hz. Phase images were analyzed with two different postprocessing methods, without (Method 1) and with (Method 2) the inversion algorithm (IA), using rheological models (Voigt, springpot) in order to characterize the viscoelastic properties (viscosity: η and elasticity: µ). RESULTS: MRE cartography of the viscous tendency (G″MRE_M2 ) measured within the region of interest (ROI) of the liver increased as a function of the level of fibrosis. Similar results were also obtained for the viscosity (ηmodels_M1 ) calculated with a postprocessing without IA. However, the viscosity (ηmodels_M2 ) remained constant with the stage of fibrosis when the postprocessing was composed of an IA. The experimental (µMRE_M1 and G'MRE_M2 ) and rheological (µmodels_M2 and µmodels_M1 ) elasticities always increased with the level of fibrosis regardless of the postprocessing method. CONCLUSION: The variation of the liver viscosity parameter as a function of postprocessing revealed that this parameter should be further investigated to demonstrate its relevance in clinical practice.


Assuntos
Algoritmos , Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Cirrose Hepática/fisiopatologia , Fígado/fisiopatologia , Modelos Biológicos , Adulto , Simulação por Computador , Feminino , Humanos , Aumento da Imagem/métodos , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Viscosidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA