Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077158

RESUMO

Ixodes ricinus ticks are distributed across Europe and are a vector of tick-borne diseases. Although I. ricinus transcriptome studies have focused exclusively on protein coding genes, the last decade witnessed a strong increase in long non-coding RNA (lncRNA) research and characterization. Here, we report for the first time an exhaustive analysis of these non-coding molecules in I. ricinus based on 131 RNA-seq datasets from three different BioProjects. Using this data, we obtained a consensus set of lncRNAs and showed that lncRNA expression is stable among different studies. While the length distribution of lncRNAs from the individual data sets is biased toward short length values, implying the existence of technical artefacts, the consensus lncRNAs show a more homogeneous distribution emphasizing the importance to incorporate data from different sources to generate a solid reference set of lncRNAs. KEGG enrichment analysis of host miRNAs putatively targeting lncRNAs upregulated upon feeding showed that these miRNAs are involved in several relevant functions for the tick-host interaction. The possibility that at least some tick lncRNAs act as host miRNA sponges was further explored by identifying lncRNAs with many target regions for a given host miRNA or sets of host miRNAs that consistently target lncRNAs together. Overall, our findings suggest that lncRNAs that may act as sponges have diverse biological roles related to the tick-host interaction in different tissues.


Assuntos
Ixodes , MicroRNAs , RNA Longo não Codificante , Doenças Transmitidas por Carrapatos , Animais , Biologia Computacional , Ixodes/genética , MicroRNAs/genética , RNA Longo não Codificante/genética
2.
Front Cell Infect Microbiol ; 12: 919786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992165

RESUMO

Ticks are blood-feeding arthropods that use the components of their salivary glands to counter the host's hemostatic, inflammatory, and immune responses. The tick midgut also plays a crucial role in hematophagy. It is responsible for managing blood meals (storage and digestion) and protecting against host immunity and pathogen infections. Previous transcriptomic studies revealed the complexity of tick sialomes (salivary gland transcriptomes) and mialomes (midgut transcriptomes) which encode for protease inhibitors, lipocalins (histamine-binding proteins), disintegrins, enzymes, and several other tick-specific proteins. Several studies have demonstrated that mammalian hosts acquire tick resistance against repeated tick bites. Consequently, there is an urgent need to uncover how tick sialomes and mialomes respond to resistant hosts, as they may serve to develop novel tick control strategies and applications. Here, we mimicked natural repeated tick bites in a laboratory setting and analyzed gene expression dynamics in the salivary glands and midguts of adult female ticks. Rabbits were subjected to a primary (feeding on a naive host) and a secondary infestation of the same host (we re-exposed the hosts but to other ticks). We used single salivary glands and midguts dissected from individual siblings adult pathogen-free female Ixodes ricinus to reduce genetic variability between individual ticks. The comprehensive analysis of 88 obtained RNA-seq data sets allows us to provide high-quality annotated sialomes and mialomes from individual ticks. Comparisons between fed/unfed, timepoints, and exposures yielded as many as 3000 putative differentially expressed genes (DEG). Interestingly, when classifying the exposure DEGs by means of a clustering approach we observed that the majority of these genes show increased expression at early feeding time-points in the mid-gut of re-exposed ticks. The existence of clearly defined groups of genes with highly similar responses to re-exposure suggests the existence of molecular swiches. In silico functional analysis shows that these early feeding reexposure response genes form a dense interaction network at protein level being related to virtually all aspects of gene expression regulation and glycosylation. The processed data is available through an easy-to-use database-associated webpage (https://arn.ugr.es/IxoriDB/) that can serve as a valuable resource for tick research.


Assuntos
Ixodes , Picadas de Carrapatos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Feminino , Ixodes/genética , Mamíferos/genética , Coelhos , Glândulas Salivares/metabolismo , Transcriptoma , Vertebrados
3.
Mol Ecol ; 31(15): 4162-4175, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661311

RESUMO

Few studies have examined tick proteomes, how they adapt to their environment, and their roles in the parasite-host interactions that drive tick infestation and pathogen transmission. Here we used a proteomics approach to screen for biologically and immunologically relevant proteins acting at the tick-host interface during tick feeding and, as proof of principle, measured host antibody responses to some of the discovered candidates. We used a label-free quantitative proteomic workflow to study salivary proteomes of (i) wild Ixodes ricinus ticks fed on different hosts, (ii) wild or laboratory ticks fed on the same host, and (iii) adult ticks cofed with nymphs. Our results reveal high and stable expression of several protease inhibitors and other tick-specific proteins under different feeding conditions. Most pathways functionally enriched in sialoproteomes were related to proteolysis, endopeptidase, and amine-binding activities. The generated catalogue of tick salivary proteins enabled the selection of six candidate secreted immunogenic peptides for rabbit immunizations, three of which induced strong and durable antigen-specific antibody responses in rabbits. Furthermore, rabbits exposed to ticks mounted immune responses against the candidate peptides/proteins, confirming their expression at the tick-vertebrate interface. Our approach provides insights into tick adaptation strategies to different feeding conditions and promising candidates for developing antitick vaccines or markers of exposure of vertebrate hosts to tick bites.


Assuntos
Proteínas de Artrópodes , Ixodes , Animais , Proteínas de Artrópodes/genética , Ixodes/genética , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Coelhos , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo , Vertebrados
4.
Toxins (Basel) ; 13(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34941750

RESUMO

Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 µM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Ixodidae/metabolismo , Serpinas/química , Serpinas/farmacologia , Sequência de Aminoácidos , Animais , Anticoagulantes/química , Anticoagulantes/metabolismo , Simulação por Computador , Modelos Moleculares , Filogenia , Conformação Proteica , Serpinas/metabolismo
5.
Front Microbiol ; 12: 697859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385988

RESUMO

Little is known about the distribution of hepatitis C virus (HCV) genotypes among people who inject drugs (PWID) in North African countries, including Tunisia. This study aims to describe HCV genotypes circulating among Tunisian PWID. A cross-sectional study was conducted, and 128 HCV-positive PWID were recruited between 2018 and 2019 from community-based harm reduction centers. After informed consent, sociodemographic characteristics and risk behavior data were obtained using an interviewer-administrated questionnaire. Blood samples were collected for further serological and molecular testing. Overall, five women and 123 men were included. The median age was 39.5 years. The majority of PWID (56.3%) had less than a secondary level of education, were single (57%), were unemployed (65.6%), were incarcerated at least once (93.0%), and had a history of residency in at least one foreign country (50.8%). During the previous 12 months, 82.0% reported having reused syringes at least once, 43.8% shared syringes at least once, while 56.2% had at least one unprotected sexual relation, and 28.1% had more than two different sexual partners. Tattooing was reported among 60.2%. All positive results for HCV-infection by rapid testing were confirmed by enzyme-linked immunosorbent assay (ELISA). HCV-RNA was detectable in 79.7%. Genotyping showed a predominance of genotype 1 (52%) followed by genotype 3 (34%) and genotype 4 (10%). Four patients (4%) had an intergenotype mixed infection. Subtyping showed the presence of six different HCV subtypes as follows: 1a (53.2%), 1b (6.4%), 3a (33.0%), 4a (3.2%), and 4d (4.3%). This is the first study describing circulating HCV genotypes among PWID in Tunisia. The distribution of HCV genotypes is distinct from the general population with a predominance of subtypes 1a and 3a. These findings can be used to guide national efforts aiming to optimize the access of PWID to relevant HCV prevention and treatment measures including pangenotypic regimens for patients infected with HCV genotype 3.

6.
PLoS Negl Trop Dis ; 15(2): e0009151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539385

RESUMO

Host blood protein digestion plays a pivotal role in the ontogeny and reproduction of hematophagous vectors. The gut of hematophagous arthropods stores and slowly digests host blood and represents the primary gateway for transmitted pathogens. The initial step in blood degradation is induced lysis of host red blood cells (hemolysis), which releases hemoglobin for subsequent processing by digestive proteolytic enzymes. The activity cycles and characteristics of hemolysis in vectors are poorly understood. Hence, we investigated hemolysis in two evolutionarily distant blood-feeding arthropods: The mosquito Culex pipiens and the soft tick Argas persicus, both of which are important human and veterinary disease vectors. Hemolysis in both species was cyclical after blood meal ingestion. Maximum digestion occurs under slightly alkaline conditions in females. Hemolytic activity appears to be of lipoid origin in C. pipiens and enzymatic activity (proteolytic) in A. persicus. We have assessed the effect of pH, incubation time, and temperature on hemolytic activity and the hemolysin. The susceptibility of red blood cells from different hosts to the hemolysin and the effect of metabolic inhibition of hemolytic activity were assessed. We conclude that in C. pipiens and A. persicus midgut hemolysins control the amplitude of blood lysis step to guarantee an efficient blood digestion.


Assuntos
Vetores Artrópodes/fisiologia , Comportamento Alimentar/fisiologia , Hemólise , Animais , Artrópodes , Culex , Culicidae , Sistema Digestório , Eritrócitos , Feminino , Testes Hematológicos , Proteínas Hemolisinas , Humanos , Mosquitos Vetores/fisiologia
7.
Int J Mol Sci ; 22(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477394

RESUMO

Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.


Assuntos
Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/uso terapêutico , Saliva/metabolismo , Animais , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Saliva/química , Glândulas Salivares/metabolismo , Carrapatos/metabolismo , Transcriptoma/genética
8.
Life (Basel) ; 11(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466803

RESUMO

Long non-coding (lnc)RNAs have emerged as critical regulators of gene expression and are involved in almost every cellular process. They can bind to other molecules including DNA, proteins, or even other RNA types such messenger RNA or small RNAs. LncRNAs are typically expressed at much lower levels than mRNA, and their expression is often restricted to tissue- or time-specific developmental stages. They are also involved in several inter-species interactions, including vector-host-pathogen interactions, where they can be either vector/host-derived or encoded by pathogens. In these interactions, they function via multiple mechanisms including regulating pathogen growth and replication or via cell-autonomous antimicrobial defense mechanisms. Recent advances suggest that characterizing lncRNAs and their targets in different species may hold the key to understanding the role of this class of non-coding RNA in interspecies crosstalk. In this review, we present a general overview of recent studies related to lncRNA-related regulation of gene expression as well as their possible involvement in regulating vector-host-pathogen interactions.

9.
Parasite Immunol ; 43(5): e12807, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33135186

RESUMO

'Omics' technologies have facilitated the identification of hundreds to thousands of tick molecules that mediate tick feeding and play a role in the transmission of tick-borne diseases. Deep sequencing methodologies have played a key role in this knowledge accumulation, profoundly facilitating the study of the biology of disease vectors lacking reference genomes. For example, the nucleotide sequences of the entire set of tick salivary effectors, the so-called tick 'sialome', now contain at least one order of magnitude more transcript sequences compared to similar projects based on Sanger sequencing. Tick feeding is a complex and dynamic process, and while the dynamic 'sialome' is thought to mediate tick feeding success, exactly how transcriptome dynamics relate to tick-host-pathogen interactions is still largely unknown. The identification and, importantly, the functional analysis of the tick 'sialome' is expected to shed light on this 'black box'. This information will be crucial for developing strategies to block pathogen transmission, not only for anti-tick vaccine development but also the discovery and development of new, pharmacologically active compounds for human diseases.


Assuntos
Proteômica , Glândulas Salivares/fisiologia , Carrapatos/fisiologia , Transcriptoma/fisiologia , Animais , Genoma/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Carrapatos/genética
10.
Toxins, v. 13, n. 12, 913, dez. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4077

RESUMO

Hemostatic disorders are caused either by platelet-related dysfunctions, defective blood coagulation, or by a combination of both, leading to an increased susceptibility to cardiovascular diseases (CVD) and other related illnesses. The unique specificity of anticoagulants from hematophagous arthropods, such as ticks, suggests that tick saliva holds great promise for discovering new treatments for these life-threatening diseases. In this study, we combined in silico and in vitro analyses to characterize the first recombinant serpin, herein called Dromaserpin, from the sialotranscriptome of the Hyalomma dromedarii tick. Our in silico data described Dromaserpin as a secreted protein of ~43 kDa with high similarities to previously characterized inhibitory serpins. The recombinant protein (rDromaserpin) was obtained as a well-structured monomer, which was tested using global blood coagulation and platelet aggregation assays. With this approach, we confirmed rDromaserpin anticoagulant activity as it significantly delayed plasma clotting in activated partial thromboplastin time and thrombin time assays. The profiling of proteolytic activity shows its capacity to inhibit thrombin in the micromolar range (0.2 to 1 μM) and in the presence of heparin this inhibition was clearly increased. It was also able to inhibit Kallikrein, FXIa and slightly FXIIa, with no significant effect on other factors. In addition, the rDromaserpin inhibited thrombin-induced platelet aggregation. Taken together, our data suggest that rDromaserpin deserves to be further investigated as a potential candidate for developing therapeutic compounds targeting disorders related to blood clotting and/or platelet aggregation.

11.
Int J Mol Sci, v. 22, n. 892, jan. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3482

RESUMO

Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick–host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.

12.
J Cell Sci ; 134(5)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154170

RESUMO

Non-coding RNAs (ncRNAs) are nucleotide sequences that are known to assume regulatory roles previously thought to be reserved for proteins. Their functions include the regulation of protein activity and localization and the organization of subcellular structures. Sequencing studies have now identified thousands of ncRNAs encoded within the prokaryotic and eukaryotic genomes, leading to advances in several fields including parasitology. ncRNAs play major roles in several aspects of vector-host-pathogen interactions. Arthropod vector ncRNAs are secreted through extracellular vesicles into vertebrate hosts to counteract host defense systems and ensure arthropod survival. Conversely, hosts can use specific ncRNAs as one of several strategies to overcome arthropod vector invasion. In addition, pathogens transmitted through vector saliva into vertebrate hosts also possess ncRNAs thought to contribute to their pathogenicity. Recent studies have addressed ncRNAs in vectors or vertebrate hosts, with relatively few studies investigating the role of ncRNAs derived from pathogens and their involvement in establishing infections, especially in the context of vector-borne diseases. This Review summarizes recent data focusing on pathogen-derived ncRNAs and their role in modulating the cellular responses that favor pathogen survival in the vertebrate host and the arthropod vector, as well as host ncRNAs that interact with vector-borne pathogens.


Assuntos
Vetores de Doenças , RNA não Traduzido , Animais , Vetores Artrópodes , Células Eucarióticas , Interações Hospedeiro-Patógeno/genética , RNA não Traduzido/genética
13.
Front Immunol ; 11: 583845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072132

RESUMO

Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.


Assuntos
Proteínas de Artrópodes/imunologia , Imunomodulação/imunologia , Saliva/imunologia , Carrapatos/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Humanos , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/terapia
14.
Biochim Biophys Acta Proteins Proteom ; 1868(2): 140336, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31816416

RESUMO

Ticks must durably suppress vertebrate host responses (hemostasis, inflammation, immunity) to avoid rejection and act as vectors of many pathogenic microorganisms that cause disease in humans and animals. Transcriptomics and proteomics studies have been used to study tick-host-pathogen interactions and have facilitated the systematic characterization of salivary composition and molecular dynamics throughout tick feeding. Tick saliva contains a complement of protease inhibitors that are differentially produced during feeding, many of which inhibit blood coagulation, platelet aggregation, vasodilation, and immunity. Here we focus on two major groups of protease inhibitors, the small molecular weight Kunitz inhibitors and cystatins. We discuss their role in tick-host-pathogen interactions, how they mediate the interaction between ticks and their hosts, and how they might be exploited both by pathogens to invade hosts and as candidates for the treatment of various human pathologies.


Assuntos
Interações Hospedeiro-Parasita , Inibidores de Proteases/metabolismo , Saliva/metabolismo , Glândulas Salivares/metabolismo , Animais , Aprotinina/química , Aprotinina/metabolismo , Cistatinas/química , Cistatinas/metabolismo , Proteômica , Carrapatos , Transcriptoma
15.
J Cell Sci, v. 134, jcs246744, nov. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3303

RESUMO

Non-coding RNAs (ncRNAs) are nucleotide sequences that are known to assume regulatory roles previously thought to be reserved for proteins. Their functions include the regulation of protein activity and localization and the organization of subcellular structures. Sequencing studies have now identified thousands of ncRNAs encoded within the prokaryotic and eukaryotic genomes, leading to advances in several fields including parasitology. ncRNAs play major roles in several aspects of vector–host–pathogen interactions. Arthropod vector ncRNAs are secreted through extracellular vesicles into vertebrate hosts to counteract host defense systems and ensure arthropod survival. Conversely, hosts can use specific ncRNAs as one of several strategies to overcome arthropod vector invasion. In addition, pathogens transmitted through vector saliva into vertebrate hosts also possess ncRNAs thought to contribute to their pathogenicity. Recent studies have addressed ncRNAs in vectors or vertebrate hosts, with relatively few studies investigating the role of ncRNAs derived from pathogens and their involvement in establishing infections, especially in the context of vector-borne diseases. This Review summarizes recent data focusing on pathogen-derived ncRNAs and their role in modulating the cellular responses that favor pathogen survival in the vertebrate host and the arthropod vector, as well as host ncRNAs that interact with vector-borne pathogens.

16.
Front Immunol ; 11: 583845, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3276

RESUMO

Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.

17.
BMC Genomics ; 20(1): 675, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455241

RESUMO

BACKGROUND: The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. RESULTS: We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. CONCLUSION: This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully.


Assuntos
Proteínas de Artrópodes/genética , Proteoma/metabolismo , Carrapatos/genética , Animais , Proteínas de Artrópodes/metabolismo , Camelus , Feminino , Perfilação da Expressão Gênica , Masculino , Proteômica , Saliva/metabolismo , Glândulas Salivares/metabolismo , Carrapatos/metabolismo , Transcriptoma
18.
Trends Parasitol ; 35(9): 715-724, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320293

RESUMO

Systems biology approaches, especially in the big data era, have revolutionized modern parasitology. Of the many different molecules participating in parasite-host interactions, noncoding RNAs (ncRNAs) are now known to be (i) transmitted by the vector to possibly modulate vertebrate host responses and favor vector survival and (ii) regulated in the host by parasites to favor parasite survival. Here we provide an overview of the involvement of ncRNAs in the parasite-vector-host triad and their effect on host homeostasis based on recent advances and accumulating knowledge about the role of endogenous vertebrate noncoding RNAs in vertebrate host physiology.


Assuntos
Vetores de Doenças , Interações Hospedeiro-Parasita/genética , RNA não Traduzido/imunologia , Animais , Homeostase/fisiologia , Interações Hospedeiro-Parasita/imunologia , Humanos , RNA não Traduzido/genética , Vertebrados/imunologia , Vertebrados/parasitologia
19.
BMC Genomics, v. 20, 675, ago. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2905

RESUMO

Background The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. Results We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. Conclusion This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully.

20.
BMC Genomics ; 20: 675, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17335

RESUMO

Background The hard tick Hyalomma dromedarii is one of the most injurious ectoparasites affecting camels and apparently best adapted to deserts. As long-term blood feeders, ticks are threatened by host defense system compounds that can cause them to be rejected and, ultimately, to die. However, their saliva contains a cocktail of bioactive molecules that enables them to succeed in taking their blood meal. A recent sialotranscriptomic study uncovered the complexity of the salivary composition of the tick H. dromedarii and provided a database for a proteomic analysis. We carried out a proteomic-informed by transcriptomic (PIT) to identify proteins in salivary glands of both genders of this tick species. Results We reported the array of 1111 proteins identified in the salivary glands of H. dromedarii ticks. Only 24% of the proteins were shared by both genders, and concur with the previously described sialotranscriptome complexity. The comparative analysis of the salivary glands of both genders did not reveal any great differences in the number or class of proteins expressed their enzymatic composition or functional classification. Indeed, few proteins in the entire proteome matched those predicted from the transcriptome while others corresponded to other proteins of other tick species. Conclusion This investigation represents the first proteomic study of H. dromedarii salivary glands. Our results shed light on the differences between the composition of H. dromedarii male and female salivary glands, thus enabling us to better understand the gender-specific strategy to feed successfully.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA