Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Phys Chem Au ; 4(4): 375-384, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39069978

RESUMO

Conventional electrodes and electrocatalysts possess complex compositional and structural motifs that impact their overall electrochemical activity. These motifs range from defects and crystal orientation on the electrode surface to layers and composites with other electrode components, such as binders. Therefore, it is vital to identify how these individual motifs alter the electrochemical activity of the electrode. Scanning electrochemical cell microscopy (SECCM) is a powerful tool that has been developed for investigating the electrochemical properties of complex structures. An example of a complex electrode surface is Zn-Al alloys, which are utilized in various sectors ranging from cathodic protection of steel to battery electrodes. Herein, voltammetric SECCM and correlative microstructure analysis are deployed to probe the electrochemical activities of a range of microstructural features, with 651 independent voltammetric measurements made in six distinctive areas on the surface of a Zn-Al alloy. Energy-dispersive X-ray spectroscopy (EDS) mapping reveals that specific phases of the alloy structure, particularly the α-phase Zn-Al, favor the early stages of metal dissolution (i.e., oxidation) and electrochemical reduction processes such as the oxygen reduction reaction (ORR) and redeposition of dissolved metal ions. A correlative analysis performed by comparing high-resolution quantitative elemental composition (i.e., EDS) with the corresponding spatially resolved cyclic voltammograms (i.e., SECCM) shows that the nanospot α-phase of the Zn-Al alloy contains high Al content (30-50%), which may facilitate local Al dissolution as the local pH increases during the ORR in unbuffered aqueous media. Overall, SECCM-based high-throughput electrochemical screening, combined with microstructure analysis, conclusively demonstrates that structure-composition heterogeneity significantly influences the local electrochemical activity on complex electrode surfaces. These insights are invaluable for the rational design of advanced electromaterials.

2.
Nanoscale ; 16(26): 12345-12367, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38874335

RESUMO

Scanning electrochemical cell microscopy (SECCM) is a nanopipette-based technique which enables measurement of localised electrochemistry. SECCM has found use in a wide range of electrochemical applications, and due to the wider uptake of this technique in recent years, new applications and techniques have been developed. This minireview has collected all SECCM research articles published in the last 5 years, to demonstrate and celebrate the recent advances, and to make it easier for SECCM researchers to remain well-informed. The wide range of SECCM applications is demonstrated, which are categorised here into electrocatalysis, electroanalysis, photoelectrochemistry, biological materials, energy storage materials, corrosion, electrosynthesis, and instrumental development. In the collection of this library of SECCM studies, a few key trends emerge. (1) The range of materials and processes explored with SECCM has grown, with new applications emerging constantly. (2) The instrumental capabilities of SECCM have grown, with creative techniques being developed from research groups worldwide. (3) The SECCM research community has grown significantly, with adoption of the SECCM technique becoming more prominent.

3.
ACS Appl Mater Interfaces ; 16(26): 33620-33632, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888466

RESUMO

Amorphous molybdenum sulfide (a-MoSx) is a promising candidate to replace noble metals as electrocatalysts for the hydrogen evolution reaction (HER) in electrochemical water splitting. So far, understanding of the activity of a-MoSx in relation to its physical (e.g., porosity) and chemical (e.g., Mo/S bonding environments) properties has mostly been derived from bulk electrochemical measurements, which provide limited information about electrode materials that possess microscopic structural heterogeneities. To overcome this limitation, herein, scanning electrochemical cell microscopy (SECCM) has been deployed to characterize the microscopic electrochemical activity of a-MoSx thin films (ca. 200 nm thickness), which possess a significant three-dimensional structure (i.e., intrinsic porosity) when produced by electrodeposition. A novel two-step SECCM protocol is designed to quantitatively determine spatially resolved electrochemical activity and electrochemical surface area (ECSA) within a single, high-throughput measurement. It is shown for the first time that although the highest surface area (e.g., most porous) regions of the a-MoSx film possess the highest total activity (measured by the electrochemical current), they do not possess the highest specific activity (measured by the ECSA-normalized current density). Instead, the areas of highest specific activity are localized at/around circular structures, coined "pockmarks", which are tens to hundreds of micrometers in size and ubiquitous to a-MoSx films produced by electrodeposition. By coupling this technique with structural and elemental composition analysis techniques (scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy) and correlating ECSA with activity and specific activity across SECCM scans, this work furthers the understanding of structure-activity relations in a-MoSx and highlights the importance of local measurements for the systematic and rational design of thin film catalyst materials.

4.
Chem Sci ; 15(19): 7243-7258, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756820

RESUMO

The next-generation of energy devices rely on advanced catalytic materials, especially electrocatalytic nanoparticles (NPs), to achieve the performance and cost required to reshape the energy landscape towards a more sustainable and cleaner future. It has become imperative to maximize the performance of the catalyst, both through improvement of the intrinsic activity of the NP, and by ensuring all particles are performing at the level of their capability. This requires not just a structure-function understanding of the catalytic material, but also an understanding of how the catalyst performance is impacted by its environment (substrate, ligand, etc.). The intrinsic activity and environment of catalytic particles on a support may differ wildly by particle, thus it is essential to build this understanding from a single-entity perspective. To achieve this herein, scanning electrochemical cell microscopy (SECCM) has been used, which is a droplet-based scanning probe technique which can encapsulate single NPs, and apply a voltage to the nanoparticle whilst measuring its resulting current. Using SECCM, single AuNPs have been encapsulated, and their activity for the borohydride oxidation reaction (BOR) is measured. A total of 268 BOR-active locations were probed (178 single particles) and a series of statistical analyses were performed in order to make the following discoveries: (1) a certain percentage of AuNPs display no BOR activity in the SECCM experiment (67.4% of single NPs), (2) visibly-similar particles display wildly varied BOR activities which cannot be explained by particle size, (3) the impact of cluster size (#NP at a single location) on a selection of diagnostic electrochemical parameters can be easily probed with SECCM, (4) exploratory statistical correlation between these parameters can be meaningfully performed with SECCM, and (5) outlying "abnormal" NP responses can be probed on a particle-by-particle basis. Each one of these findings is its own worthwhile study, yet this has been achieved with a single SECCM scan. It is hoped that this research will spur electrochemists and materials scientists to delve deeper into their substantial datasets in order to enhance the structure-function understanding, to bring about the next generation of high-performance electrocatalysts.

5.
Analyst ; 149(9): 2542-2555, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38632960

RESUMO

Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.

6.
Chem Commun (Camb) ; 60(36): 4781-4784, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38600827

RESUMO

Scanning electrochemical cell microscopy (SECCM) is employed to directly identify the structure-dependent electrochemical CO2 reduction reaction (eCO2RR) activity of molybdenite (MoS2) electrocatalysts in an aqueous imidazolium-based aprotic ionic liquid electrolyte. Nanoscale defects, where the edge plane (EP) is exposed, are directly targeted, revealing heightened overall activity (eCO2RR + the competing hydrogen evolution reaction, HER) over the relatively inactive basal plane (BP). In addition, certain types of defects (e.g., step edges) only exhibit heightened activity under a CO2 atmosphere (i.e., compared to N2), indirectly confirming higher selectivity at these surface sites. Overall, this work will guide the bottom-up design of earth-abundant electrocatalysts for use in large-scale CO2 electrolysis.

7.
ACS Nano ; 17(21): 21493-21505, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37883688

RESUMO

Nanostructured electrocatalysts exhibit variations in electrochemical properties across different length scales, and the intrinsic catalytic characteristics measured at the nanoscale often differ from those at the macro-level due to complexity in electrode structure and/or composition. This aspect of electrocatalysis is addressed herein, where the oxygen evolution reaction (OER) activity of ß-Co(OH)2 platelet particles of well-defined structure is investigated in alkaline media using multiscale scanning electrochemical cell microscopy (SECCM). Microscale SECCM probes of ∼50 µm diameter provide voltammograms from small particle ensembles (ca. 40-250 particles) and reveal increasing dispersion in the OER rates for samples of the same size as the particle population within the sample decreases. This suggests the underlying significance of heterogeneous activity at the single-particle level that is confirmed through single-particle measurements with SECCM probes of ∼5 µm diameter. These measurements of multiple individual particles directly reveal significant variability in the OER activity at the single-particle level that do not simply correlate with the particle size, basal plane roughness, or exposed edge plane area. In combination, these measurements demarcate a transition from an "individual particle" to an "ensemble average" response at a population size of ca. 130 particles, above which the OER current density closely reflects that measured in bulk at conventional macroscopic particle-modified electrodes. Nanoscale SECCM probes (ca. 120 and 440 nm in diameter) enable measurements at the subparticle level, revealing that there is selective OER activity at the edges of particles and highlighting the importance of the three-phase boundary where the catalyst, electrolyte, and supporting carbon electrode meet, for efficient electrocatalysis. Furthermore, subparticle measurements unveil heterogeneity in the OER activity among particles that appear superficially similar, attributable to differences in defect density within the individual particles, as well as to variations in electrical and physical contact with the support material. Overall this study provides a roadmap for the multiscale analysis of nanostructured electrocatalysts, directly demonstrating the importance of multilength scale factors, including particle structure, particle-support interaction, presence of defects, etc., in governing the electrochemical activities of ß-Co(OH)2 platelet particles and ultimately guiding the rational design and optimization of these materials for alkaline water electrolysis.

8.
ACS Sustain Chem Eng ; 11(4): 1459-1471, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36743391

RESUMO

Scanning electrochemical cell microscopy (SECCM) facilitates single particle measurements of battery materials using voltammetry at fast scan rates (1 V s-1), providing detailed insight into intrinsic particle kinetics, otherwise obscured by matrix effects. Here, we elucidate the electrochemistry of lithium manganese oxide (LiMn2O4) particles, using a series of SECCM probes of graded size to determine the evolution of electrochemical characteristics from the single particle to ensemble level. Nanometer scale control over the SECCM meniscus cell position and height further allows the study of variable particle/substrate electrolyte wetting, including comparison of fully wetted particles (where contact is also made with the underlying glassy carbon substrate electrode) vs partly wetted particles. We find ensembles of LiMn2O4 particles show voltammograms with much larger peak separations than those of single particles. In addition, if the SECCM meniscus is brought into contact with the substrate electrode, such that the particle-support contact changes from dry to wet, a further dramatic increase in peak separation is observed. Finite element method modeling of the system reveals the importance of finite electronic conductivity of the particles, contact resistance, surface kinetics, particle size, and contact area with the electrode surface in determining the voltammetric waveshape at fast scan rates, while the responses are relatively insensitive to Li+ diffusion coefficients over a range of typical values. The simulation results explain the variability in voltammetric responses seen at the single particle level and reveal some of the key factors responsible for the evolution of the response, from ensemble, contact, and wetting perspectives. The variables and considerations explored herein are applicable to any single entity (nanoscale) electrochemical study involving low conductivity materials and should serve as a useful guide for further investigations of this type. Overall, this study highlights the potential of multiscale measurements, where wetting, electronic contact, and ionic contact can be varied independently, to inform the design of practical composite electrodes.

9.
Chem Commun (Camb) ; 59(16): 2287-2290, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36744442

RESUMO

Local voltammetric analysis with a scanning electrochemical droplet cell technique, in combination with a new data processing protocol (termed data binning and trinisation), is used to directly identify previously unseen regions of elevated electrocatalytic activity on the basal plane (BP) of molybdenum disulfide (2H-MoS2). This includes BP-like structures with hydrogen evolution reaction activities approaching that of the edge plane and rare nanoscale electrocatalytic "hot-spots" present at an areal density of approximately 0.2-1 µm-2. Understanding the nature of (sub)microscopic catalytic active sites, such as those identified herein, is crucial to guide the rational design of next-generation earth-abundant materials for renewable fuels production.

10.
J Phys Chem C Nanomater Interfaces ; 126(35): 14897-14907, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36110498

RESUMO

Copper (Cu) corrosion is a compelling problem in the automotive sector and in oil refinery and transport, where it is mainly caused by the action of acidic aqueous droplets dispersed in an oil phase. Corrosion inhibitors, such as benzotriazole (BTAH) and its derivatives, are widely used to limit such corrosion processes. The efficacy of corrosion inhibitors is expected to be dependent on the surface crystallography of metals exposed to the corrosion environment. Yet, studies of the effect of additives at the local level of the surface crystallographic structure of polycrystalline metals are challenging, particularly lacking for the triple-phase corrosion problem (metal/aqueous/oil). To address this issue, scanning electrochemical cell microscopy (SECCM), is used in an acidic nanodroplet meniscus|oil layer|polycrystalline Cu configuration to explore the grain-dependent influence of an oil soluble BTAH derivative (BTA-R) on Cu electrochemistry within the confines of a local aqueous nanoprobe. Electrochemical maps, collected in the voltammetric mode at an array of >1000 points across the Cu surface, reveal both cathodic (mainly the oxygen reduction reaction) and anodic (Cu electrooxidation) processes, of relevance to corrosion, as a function of the local crystallographic structure, deduced with co-located electron backscatter diffraction (EBSD). BTA-R is active on the whole spectrum of crystallographic orientations analyzed, but there is a complex grain-dependent action, distinct for oxygen reduction and Cu oxidation. The methodology pinpoints the surface structural motifs that facilitate corrosion-related processes and where BTA-R works most efficiently. Combined SECCM-EBSD provides a detailed screen of a spectrum of surface sites, and the results should inform future modeling studies, ultimately contributing to a better inhibitor design.

11.
ACS Nano ; 16(4): 5233-5245, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35286810

RESUMO

In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (e.g., cracks, holes, etc.) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm2 area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.

12.
Acc Chem Res ; 55(3): 241-251, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020363

RESUMO

ConspectusElectrochemical reduction of the greenhouse gas CO2 offers prospects for the sustainable generation of fuels and industrially useful chemicals when powered by renewable electricity. However, this electrochemical process requires the use of highly stable, selective, and active catalysts. The development of such catalysts should be based on a detailed kinetic and mechanistic understanding of the electrochemical CO2 reduction reaction (eCO2RR), ideally through the resolution of active catalytic sites in both time (i.e., temporally) and space (i.e., spatially). In this Account, we highlight two advanced spatiotemporal voltammetric techniques for electrocatalytic studies and describe the considerable insights they provide on the eCO2RR. First, Fourier transformed large-amplitude alternating current voltammetry (FT ac voltammetry), as applied by the Monash Electrochemistry Group, enables the resolution of rapid underlying electron-transfer processes in complex reactions, free from competing processes, such as the background double-layer charging current, slow catalytic reactions, and solvent/electrolyte electrolysis, which often mask conventional voltammetric measurements of the eCO2RR. Crucially, FT ac voltammetry allows details of the catalytically active sites or the rate-determining step to be revealed under catalytic turnover conditions. This is well illustrated in investigations of the eCO2RR catalyzed by Bi where formate is the main product. Second, developments in scanning electrochemical cell microscopy (SECCM) by the Warwick Electrochemistry and Interfaces Group provide powerful methods for obtaining high-resolution activity maps and potentiodynamic movies of the heterogeneous surface of a catalyst. For example, by coupling SECCM data with colocated microscopy from electron backscatter diffraction (EBSD) or atomic force microscopy, it is possible to develop compelling correlations of (precatalyst) structure-activity at the nanoscale level. This correlative electrochemical multimicroscopy strategy allows the catalytically more active region of a catalyst, such as the edge plane of two-dimensional materials and the grain boundaries between facets in a polycrystalline metal, to be highlighted. The attributes of SECCM-EBSD are well-illustrated by detailed studies of the eCO2RR on polycrystalline gold, where carbon monoxide is the main product. Comparing SECCM maps and movies with EBSD images of the same region reveals unambiguously that the eCO2RR is enhanced at surface-terminating dislocations, which accumulate at grain boundaries and slip bands. Both FT ac voltammetry and SECCM techniques greatly enhance our understanding of the eCO2RR, significantly boosting the electrochemical toolbox and the information available for the development and testing of theoretical models and rational catalyst design. In the future, it may be possible to further enhance insights provided by both techniques through their integration with in situ and in operando spectroscopy and microscopy methods.

13.
Nature ; 593(7857): 67-73, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953412

RESUMO

Transition metal (oxy)hydroxides are promising electrocatalysts for the oxygen evolution reaction1-3. The properties of these materials evolve dynamically and heterogeneously4 with applied voltage through ion insertion redox reactions, converting materials that are inactive under open circuit conditions into active electrocatalysts during operation5. The catalytic state is thus inherently far from equilibrium, which complicates its direct observation. Here, using a suite of correlative operando scanning probe and X-ray microscopy techniques, we establish a link between the oxygen evolution activity and the local operational chemical, physical and electronic nanoscale structure of single-crystalline ß-Co(OH)2 platelet particles. At pre-catalytic voltages, the particles swell to form an α-CoO2H1.5·0.5H2O-like structure-produced through hydroxide intercalation-in which the oxidation state of cobalt is +2.5. Upon increasing the voltage to drive oxygen evolution, interlayer water and protons de-intercalate to form contracted ß-CoOOH particles that contain Co3+ species. Although these transformations manifest heterogeneously through the bulk of the particles, the electrochemical current is primarily restricted to their edge facets. The observed Tafel behaviour is correlated with the local concentration of Co3+ at these reactive edge sites, demonstrating the link between bulk ion-insertion and surface catalytic activity.

14.
ACS Appl Mater Interfaces ; 12(39): 44307-44316, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32880446

RESUMO

Thin-film electrodes, produced by coating a conductive support with a thin layer (nanometer to micrometer) of active material, retain the unique properties of nanomaterials (e.g., activity, surface area, conductivity, etc.) while being economically scalable, making them highly desirable as electrocatalysts. Despite the ever-increasing methods of thin-film deposition (e.g., wet chemical synthesis, electrodeposition, chemical vapor deposition, etc.), there is insufficient understanding on the nanoscale electrochemical activity of these materials in relation to structure/composition, particularly for those that lack long-range order (i.e., amorphous thin-film materials). In this work, scanning electrochemical cell microscopy (SECCM) is deployed in tandem with complementary, colocated compositional/structural analysis to understand the microscopic factors governing the electrochemical activity of amorphous molybdenum sulfide (a-MoSx) thin films, a promising class of hydrogen evolution reaction (HER) catalyst. The a-MoSx thin films, produced under ambient conditions by electrodeposition, possess spatially heterogeneous electrocatalytic activity on the tens-of-micrometer scale, which is not attributable to microscopic variations in elemental composition or chemical structure (i.e., Mo and/or S bonding environments), shown through colocated, local energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis. A new SECCM protocol is implemented to directly correlate electrochemical activity to the electrochemical surface area (ECSA) in a single measurement, revealing that the spatially heterogeneous HER response of a-MoSx is predominantly attributable to variations in the nanoscale porosity of the thin film, with surface roughness ruled out as a major contributing factor by complementary atomic force microscopy (AFM). As microscopic composition, structure, and porosity (ECSA) are all critical factors dictating the functional properties of nanostructured materials in electrocatalysis and beyond (e.g., battery materials, electrochemical sensors, etc.), this work further cements SECCM as a premier tool for structure-function studies in (electro)materials science.

15.
Anal Chem ; 92(18): 12509-12517, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786472

RESUMO

Electrochemical impedance spectroscopy (EIS) is a versatile tool for electrochemistry, particularly when applied locally to reveal the properties and dynamics of heterogeneous interfaces. A new method to generate local electrochemical impedance spectra is outlined, by applying a harmonic bias between a quasi-reference counter electrode (QRCE) placed in a nanopipet tip of a scanning ion conductance microscope (SICM) and a conductive (working electrode) substrate (two-electrode setup). The AC frequency can be tuned so that the magnitude of the impedance is sensitive to the tip-to-substrate distance, whereas the phase angle is broadly defined by the local capacitive response of the electrical double layer (EDL) of the working electrode. This development enables the surface topography and the local capacitance to be sensed reliably, and separately, in a single measurement. Further, self-referencing the probe impedance near the surface to that in the bulk solution allows the local capacitive response of the working electrode substrate in the overall AC signal to be determined, establishing a quantitative footing for the methodology. The spatial resolution of AC-SICM is an order of magnitude larger than the tip size (100 nm radius), for the studies herein, due to frequency dispersion. Comprehensive finite element method (FEM) modeling is undertaken to optimize the experimental conditions and minimize the experimental artifacts originating from the frequency dispersion phenomenon, and provides an avenue to explore the means by which the spatial resolution could be further improved.

16.
Anal Chem ; 92(17): 11673-11680, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521997

RESUMO

Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage of the "tunable" physicochemical properties (e.g., proton availability and/or electrochemical stability) of nonaqueous (e.g., aprotic) electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) in aprotic solvent electrolyte media to address contemporary structure-electrochemical activity problems. Using the simple outer-sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipitation/crystallization on the scanning (minutes to hours) time scale. When applied to perform microfabrication-specifically the electrosynthesis of the conductive polymer, polypyrrole-the optimized SECCM set up produces highly reproducible arrays of synthesized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic activity-specifically the electro-oxidation of iodide at polycrystalline platinum-reveals unique (i.e., structure-dependent) patterns of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation identified as potential electrocatalytic "hot spots". The work herein further cements SECCM as a premier technique for structure-function-activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion, and beyond.

17.
Chem Sci ; 12(8): 3055-3069, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34164075

RESUMO

Practically important metal electrodes are usually polycrystalline, comprising surface grains of many different crystallographic orientations, as well as grain boundaries. In this study, scanning electrochemical cell microscopy (SECCM) is applied in tandem with co-located electron backscattered diffraction (EBSD) to give a holistic view of the relationship between the surface structure and the electrochemical activity and corrosion susceptibility of polycrystalline Cu. An unusual aqueous nanodroplet/oil (dodecane)/metal three-phase configuration is employed, which opens up new prospects for fundamental studies of multiphase electrochemical systems, and mimics the environment of corrosion in certain industrial and automotive applications. In this configuration, the nanodroplet formed at the end of the SECCM probe (nanopipette) is surrounded by dodecane, which acts as a reservoir for oil-soluble species (e.g., O2) and can give rise to enhanced flux(es) across the immiscible liquid-liquid interface, as shown by finite element method (FEM) simulations. This unique three-phase configuration is used to fingerprint nanoscale corrosion in a nanodroplet cell, and to analyse the interrelationship between the Cu oxidation, Cu2+ deposition and oxygen reduction reaction (ORR) processes, together with nanoscale open circuit (corrosion) potential, in a grain-by-grain manner. Complex patterns of surface reactivity highlight the important role of grains of high-index orientation and microscopic surface defects (e.g., microscratches) in modulating the corrosion-properties of polycrystalline Cu. This work provides a roadmap for in-depth surface structure-function studies in (electro)materials science and highlights how small variations in surface structure (e.g., crystallographic orientation) can give rise to large differences in nanoscale reactivity.

18.
ACS Nano ; 13(11): 13271-13284, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31674763

RESUMO

Conductive polymers are exceptionally promising for modular electrochemical applications including chemical sensors, bioelectronics, redox-flow batteries, and photoelectrochemical systems due to considerable synthetic tunability and ease of processing. Despite well-established structural heterogeneity in these systems, conventional macroscopic electroanalytical methods-specifically cyclic voltammetry-are typically used as the primary tool for structure-property elucidation. This work presents an alternative correlative multimicroscopy strategy. Data from laboratory and synchrotron-based microspectroscopies, including conducting-atomic force microscopy and synchrotron nanoscale infrared spectroscopy, are combined with potentiodynamic movies of electrochemical fluxes from scanning electrochemical cell microscopy (SECCM) to reveal the relationship between electrode structure and activity. A model conductive polymer electrode system of tailored heterogeneity is investigated, consisting of phase-segregated domains of poly(3-hexylthiophene) (P3HT) surrounded by contiguous regions of insulating poly(methyl methacrylate) (PMMA), representing an ultramicroelectrode array. Isolated domains of P3HT are shown to retain bulk-like chemical and electronic structure when blended with PMMA and possess approximately equivalent electron-transfer rate constants compared to pure P3HT electrodes. The nanoscale electrochemical data are used to model and predict multiscale electrochemical behavior, revealing that macroscopic cyclic voltammograms should be much more kinetically facile than observed experimentally. This indicates that parasitic resistances rather than redox kinetics play a dominant role in macroscopic measurements in these conductive polymer systems. SECCM further demonstrates that the ambient degradation of the P3HT electroactivity within P3HT/PMMA blends is spatially heterogeneous. This work serves as a roadmap for benchmarking the quality of conductive polymer films as electrodes, emphasizing the importance of nanoscale electrochemical measurements in understanding macroscopic properties.

19.
Anal Chem ; 91(23): 14854-14859, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31674764

RESUMO

As part of the revolution in electrochemical nanoscience, there is growing interest in using electrochemistry to create nanostructured materials and to assess properties at the nanoscale. Herein, we present a platform that combines scanning electrochemical cell microscopy with ex situ scanning transmission electron microscopy to allow the ready creation of an array of nanostructures coupled with atomic-scale analysis. As an illustrative example, we explore the electrodeposition of Pt at carbon-coated transmission electron microscopy (TEM) grid supports, where in a single high-throughput experiment it is shown that Pt nanoparticle (PtNP) density increases and size polydispersity decreases with increasing overpotential (i.e., driving force). Furthermore, the coexistence of a range of nanostructures, from single atoms to aggregates of crystalline PtNPs, during the early stages of electrochemical nucleation and growth supports a nonclassical aggregative growth mechanism. Beyond this exemplary system, the presented correlative electrochemistry-microscopy approach is generally applicable to solve ubiquitous structure-function problems in electrochemical science and beyond, positioning it as a powerful platform for the rational design of functional nanomaterials.

20.
Anal Chem ; 91(14): 9229-9237, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31251561

RESUMO

Scanning electrochemical cell microscopy (SECCM) has been applied for nanoscale (electro)activity mapping in a range of electrochemical systems but so far has almost exclusively been performed in controlled-potential (amperometric/voltammetric) modes. Herein, we consider the use of SECCM operated in a controlled-current (galvanostatic or chronopotentiometric) mode, to synchronously obtain spatially resolved electrode potential (i.e., electrochemical activity) and topographical "maps". This technique is first applied, as proof of concept, to study the electrochemically reversible [Ru(NH3)6]3+/2+ electron transfer process at a glassy carbon electrode surface, where the experimental data are in good agreement with well-established chronopotentiometric theory under quasi-radial diffusion conditions. The [Ru(NH3)6]3+/2+ process has also been imaged at "aged" highly ordered pyrolytic graphite (HOPG), where apparently enhanced electrochemical activity is measured at the edge plane relative to the basal plane surface, consistent with potentiostatic measurements. Finally, chronopotentiometric SECCM has been employed to benchmark a promising electrocatalytic system, the hydrogen evolution reaction (HER) at molybdenum disulfide (MoS2), where higher electrocatalytic activity (i.e., lower overpotential at a current density of 2 mA cm-2) is observed at the edge plane compared to the basal plane surface. These results are in excellent agreement with previous controlled-potential SECCM studies, confirming the viability of the technique and thereby opening up new possibilities for the use of chronopotentiometric methods for quantitative electroanalysis at the nanoscale, with promising applications in energy storage (battery) studies, electrocatalyst benchmarking, and corrosion research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA