Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Xenobiot ; 14(4): 1378-1405, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39449418

RESUMO

Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.

2.
Front Public Health ; 12: 1419525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145180

RESUMO

Background: The widespread use of radiofrequency (RF) sources, ranging from household appliances to telecommunications devices and military equipment, raises concerns among people and regulatory agencies about the potential health risks of RF exposure. Consequently, several in vitro and in vivo studies have been done to investigate the biological effects, in particular non-thermal, of this non-ionizing radiation. To date, this issue is still being debated due to the controversial results that have been reported. Furthermore, the impact of different RF signal modulations on biological systems remains poorly investigated. The present in vitro study aims to evaluate the cytotoxicity and genotoxicity of continuous or pulsed 1.6 GHz RF in human dermal fibroblasts (HDF). Methods: HDF cultures were exposed to continuous and pulsed 1.6 GHz RF, for 2 h, with Specific Absorption Rate (SAR) of 0.4 W/kg. The potential biological effects of 1.6 GHz RF on HDF were assessed with a multi-methodological approach, analyzing the effects on cell cycle, ultrastructure, protein expression, mitotic spindle, CREST stained micronuclei, chromosome segregation and γ-H2AX/53BP1 foci. Results: 1.6 GHz RF exposure modified proteins expression and morphology of HDF. Specifically, the expression of different heat-shock proteins (HSP) (i.e., HSP-90, HSP-60, and HSP-25) and phospho-AKT were affected. In addition, both continuous and pulsed RF modified the cytoskeletal organization in HDF and increased the number of lysosomes, while the formation of autophagosomes was observed only after pulsed RF exposure. Mitotic spindle anomalies were also found after exposure. However, no significant effect was observed on cell cycle, chromosome segregation, CREST-stained micronuclei and γ-H2AX/53BP1 foci. Conclusion: The results of the present study show the absence of genotoxic damage in 1.6 GHz RF exposed HDF and, although mitotic spindle alterations were observed, they did not have an aneugenic effect. On the other hand, changes in some proteins expression and cell ultrastructure in exposed HDF suggest that RF can potentially induce cell alterations at the morphological and molecular levels.


Assuntos
Fibroblastos , Ondas de Rádio , Humanos , Fibroblastos/efeitos da radiação , Ondas de Rádio/efeitos adversos , Dano ao DNA , Ciclo Celular/efeitos da radiação , Células Cultivadas
3.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892447

RESUMO

Bisphenol-A (BPA), a synthetic compound ubiquitously present in the environment, can act as an endocrine disruptor by binding to both canonical and non-canonical estrogen receptors (ERs). Exposure to BPA has been linked to various cancers, in particular, those arising in hormone-targeted tissues such as the breast. In this study, we evaluated the effect of BPA intake through drinking water on ErbB2/neu-driven cancerogenesis in BALB-neuT mice, transgenic for a mutated ErbB2/neu receptor gene, which reproducibly develop carcinomas in all mammary glands. In this model, BPA accelerated mammary cancerogenesis with an increase in the number of tumors per mouse and a concurrent decrease in tumor-free and overall survival. As assessed by immunohistochemistry, BALB-neuT tumors were ER-negative but expressed high levels of the alternative estrogen receptor GPR30, regardless of BPA exposure. On the other hand, BPA exposure resulted in a marked upregulation of progesterone receptors in preinvasive tumors and of Ki67, CD31, and phosphorylated Akt in invasive tumors. Moreover, based on several infiltration markers of immune cells, BPA favored an immunosuppressive tumor microenvironment. Finally, in vitro cell survival studies performed on a cell line established from a BALB-neuT breast carcinoma confirmed that BPA's impact on cancer progression can be particularly relevant after chronic, low-dose exposure.


Assuntos
Compostos Benzidrílicos , Camundongos Endogâmicos BALB C , Fenóis , Receptores de Estrogênio , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Feminino , Camundongos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Água Potável , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Transgênicos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Disruptores Endócrinos/toxicidade
4.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612452

RESUMO

The tumor microenvironment (TME) plays a critical role in cancerogenesis [...].


Assuntos
Neoplasias , Humanos , Comunicação Celular , Microambiente Tumoral
5.
Biomedicines ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540096

RESUMO

Focal adhesion plaques (FAPs) play an important role in the communication between cells and the extracellular matrix (ECM) and in cells' migration. FAPs are macromolecular complexes made by different proteins which also interact with matrix metalloproteinases (MMPs). Because of these fundamental properties, FAPs and MMPs are also involved in cancer cells' invasion and in the metastatic cascade. The most important proteins involved in FAP formation and activity are (i) integrins, (ii) a complex of intracellular proteins and (iii) cytoskeleton proteins. The latter, together with MMPs, are involved in the formation of filopodia and invadopodia needed for cell movement and ECM degradation. Due to their key role in cancer cell migration and invasion, MMPs and components of FAPs are often upregulated in cancer and are thus potential targets for cancer therapy. Polyphenols, a large group of organic compounds found in plant-based food and beverages, are reported to have many beneficial healthy effects, including anticancer and anti-inflammatory effects. In this review, we discuss the growing evidence which demonstrates that polyphenols can interact with the different components of FAPs and MMPs, inhibit various pathways like PI3K/Akt, lower focal adhesion kinase (FAK) phosphorylation and decrease cancer cells' invasiveness, leading to an overall antitumoral effect. Finally, here we highlight that polyphenols could hold potential as adjunctive therapies to conventional cancer treatments due to their ability to target key mechanisms involved in cancer progression.

6.
Int J Food Sci Nutr ; 74(7): 746-759, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37661348

RESUMO

Several attempts have been made to develop targeted therapies for malignant mesothelioma (MM), an aggressive tumour with a poor prognosis. In this study we evaluated whether Curcumin (CUR) potentiated the antitumor activity of the ErbB receptors inhibitor Afatinib (AFA) on MM, employing cell lines cultured in vitro and mice bearing intraperitoneally transplanted, syngeneic MM cells. The rationale behind this hypothesis was that CUR could counteract mechanisms of acquired resistance to AFA. We analysed CUR and AFA effects on MM cell growth, cell cycle, autophagy, and on the modulation of tumour-supporting signalling pathways.This study demonstrated that, as compared to the individual compounds, the combination of AFA + CUR had a stronger effect on MM progression which can be ascribed either to increased tumour cell growth inhibition or to an enhanced pro-apoptotic effect. These results warrant future studies aimed at further exploring the therapeutic potential of AFA + CUR-based combination regimens for MM treatment.


Assuntos
Curcumina , Mesotelioma Maligno , Camundongos , Animais , Afatinib/farmacologia , Receptores ErbB , Curcumina/farmacologia , Linhagem Celular Tumoral
7.
Front Immunol ; 14: 1197053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359555

RESUMO

DNAM-1 is a major NK cell activating receptor and, together with NKG2D and NCRs, by binding specific ligands, strongly contributes to mediating the killing of tumor or virus-infected cells. DNAM-1 specifically recognizes PVR and Nectin-2 ligands that are expressed on some virus-infected cells and on a broad spectrum of tumor cells of both hematological and solid malignancies. So far, while NK cells engineered for different antigen chimeric receptors (CARs) or chimeric NKG2D receptor have been extensively tested in preclinical and clinical studies, the use of DNAM-1 chimeric receptor-engineered NK cells has been proposed only in our recent proof-of-concept study and deserves further development. The aim of this perspective study is to describe the rationale for using this novel tool as a new anti-cancer immunotherapy.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Ligantes , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Receptores de Antígenos/metabolismo
8.
Biomedicines ; 11(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37371856

RESUMO

Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.

9.
Biol Direct ; 18(1): 17, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069690

RESUMO

BACKGROUND: Malignant mesothelioma (MM) is a rare tumor with a dismal prognosis. The low efficacy of current treatment options highlights the urge to identify more effective therapies aimed at improving MM patients' survival. Bortezomib (Bor) is a specific and reversible inhibitor of the chymotrypsin-like activity of the 20S core of the proteasome, currently approved for the treatment of multiple myeloma and mantle cell lymphoma. On the other hand, Bor appears to have limited clinical effects on solid tumors, because of its low penetration and accumulation into tumor tissues following intravenous administration. These limitations could be overcome in MM through intracavitary delivery, with the advantage of increasing local drug concentration and decreasing systemic toxicity. METHODS: In this study, we investigated the effects of Bor on cell survival, cell cycle distribution and modulation of apoptotic and pro-survival pathways in human MM cell lines of different histotypes cultured in vitro. Further, using a mouse MM cell line that reproducibly forms ascites when intraperitoneally injected in syngeneic C57BL/6 mice, we investigated the effects of intraperitoneal Bor administration in vivo on both tumor growth and the modulation of the tumor immune microenvironment. RESULTS: We demonstrate that Bor inhibited MM cell growth and induced apoptosis. Further, Bor activated the Unfolded Protein Response, which however appeared to participate in lowering cells' sensitivity to the drug's cytotoxic effects. Bor also affected the expression of EGFR and ErbB2 and the activation of downstream pro-survival signaling effectors, including ERK1/2 and AKT. In vivo, Bor was able to suppress MM growth and extend mice survival. The Bor-mediated delay of tumor progression was sustained by increased activation of T lymphocytes recruited to the tumor microenvironment. CONCLUSIONS: The results presented herein support the use of Bor in MM and advocate future studies aimed at defining the therapeutic potential of Bor and Bor-based combination regimens for this treatment-resistant, aggressive tumor.


Assuntos
Mesotelioma Maligno , Animais , Camundongos , Humanos , Adulto , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mesotelioma Maligno/tratamento farmacológico , Linhagem Celular Tumoral , Linfócitos T , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático , Apoptose , Microambiente Tumoral
10.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047775

RESUMO

The effects of dietary factors on cancer have been widely studied for several decades [...].


Assuntos
Neoplasias , Humanos , Neoplasias/etiologia , Dieta
11.
Front Med (Lausanne) ; 10: 1066021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817764

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type, has often an aggressive course and is poorly responsive to current therapeutic approaches, so that 5-year survival rates for patients diagnosed with advanced disease is lower than 50%. The Epidermal Growth Factor Receptor (EGFR) has emerged as an established oncogene in HNSCC. Indeed, although HNSCCs are a heterogeneous group of cancers which differ for histological, molecular and clinical features, EGFR is overexpressed or mutated in a percentage of cases up to about 90%. Moreover, aberrant expression of the other members of the ErbB receptor family, ErbB2, ErbB3 and ErbB4, has also been reported in variable proportions of HNSCCs. Therefore, an increased expression/activity of one or multiple ErbB receptors is found in the vast majority of patients with HNSCC. While aberrant ErbB signaling has long been known to play a critical role in tumor growth, angiogenesis, invasion, metastatization and resistance to therapy, more recent evidence has revealed its impact on other features of cancer cells' biology, such as the ability to evade antitumor immunity. In this paper we will review recent findings on how ErbB receptors expression and activity, including that associated with non-canonical signaling mechanisms, impacts on prognosis and therapy of HNSCC.

13.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203402

RESUMO

The polyphenols Curcumin (CUR) and Resveratrol (RES) are widely described for their antitumoral effects. However, their low bioavailability is a drawback for their use in therapy. The aim of this study was to explore whether CUR and RES, used at a bioavailable concentration, could modulate immune responses while retaining antitumor activity and to determine whether CUR and RES effects on the immune responses of peripheral blood mononuclear cells (PBMCs) and tumor growth inhibition could be improved by their combination. We demonstrate that the low-dose combination of CUR and RES reduced the survival of cancer cell lines but had no effect on the viability of PBMCs. Although following CUR + RES treatment T lymphocytes showed an enhanced activated state, RES counteracted the increased IFN-γ expression induced by CUR in T cells and the polyphenol combination increased IL-10 production by T regulatory cells. On the other hand, the combined treatment enhanced NK cell activity through the up- and downregulation of activating and inhibitory receptors and increased CD68 expression levels on monocytes/macrophages. Overall, our results indicate that the combination of CUR and RES at low doses differentially shapes immune cells while retaining antitumor activity, support the use of this polyphenol combinations in anticancer therapy and suggest its possible application as adjuvant for NK cell-based immunotherapies.


Assuntos
Curcumina , Neoplasias , Humanos , Resveratrol/farmacologia , Sobrevivência Celular , Curcumina/farmacologia , Leucócitos Mononucleares , Polifenóis/farmacologia , Neoplasias/tratamento farmacológico , Imunidade
14.
Front Immunol ; 13: 886319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967339

RESUMO

Adoptive transfer of engineered NK cells, one of clinical approaches to fight cancer, is gaining great interest in the last decade. However, the development of new strategies is needed to improve clinical efficacy and safety of NK cell-based immunotherapy. NK cell-mediated recognition and lysis of tumor cells are strictly dependent on the expression of ligands for NK cell-activating receptors NKG2D and DNAM-1 on tumor cells. Of note, the PVR/CD155 and Nectin-2/CD112 ligands for DNAM-1 are expressed primarily on solid tumor cells and poorly expressed in normal tissue cells. Here, we generated human NK cells expressing either the full length DNAM-1 receptor or three different DNAM-1-based chimeric receptor that provide the expression of DNAM-1 fused to a costimulatory molecule such as 2B4 and CD3ζ chain. Upon transfection into primary human NK cells isolated from healthy donors, we evaluated the surface expression of DNAM-1 and, as a functional readout, we assessed the extent of degranulation, cytotoxicity and the production of IFNγ and TNFα in response to human leukemic K562 cell line. In addition, we explored the effect of Nutlin-3a, a MDM2-targeting drug able of restoring p53 functions and known to have an immunomodulatory effect, on the degranulation of DNAM-1-engineered NK cells in response to human neuroblastoma (NB) LA-N-5 and SMS-KCNR cell lines. By comparing NK cells transfected with four different plasmid vectors and through blocking experiments, DNAM-1-CD3ζ-engineered NK cells showed the strongest response. Furthermore, both LA-N-5 and SMS-KCNR cells pretreated with Nutlin-3a were significantly more susceptible to DNAM-1-engineered NK cells than NK cells transfected with the empty vector. Our results provide a proof-of-concept suggesting that the combined use of DNAM-1-chimeric receptor-engineered NK cells and Nutlin-3a may represent a novel therapeutic approach for the treatment of solid tumors, such as NB, carrying dysfunctional p53.


Assuntos
Neuroblastoma , Proteína Supressora de Tumor p53 , Humanos , Imidazóis , Células Matadoras Naturais/metabolismo , Ligantes , Neuroblastoma/metabolismo , Neuroblastoma/terapia , Piperazinas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Transl Med ; 20(1): 286, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752861

RESUMO

Malignant mesothelioma (MM) is a rare orphan aggressive neoplasia with low survival rates. Among the other signaling pathways, ErbB receptors and Hh signaling are deregulated in MM. Thus, molecules involved in these signaling pathways could be used for targeted therapy approaches. The aim of this study was to evaluate the effects of inhibitors of Hh- (GANT-61) and ErbB receptors (Afatinib)-mediated signaling pathways, when used alone or in combination, on growth, cell cycle, cell death and autophagy, modulation of molecules involved in transduction pathways, in three human MM cell lines of different histotypes. The efficacy of the combined treatment was also evaluated in a murine epithelioid MM cell line both in vitro and in vivo. This study demonstrated that combined treatment with two inhibitors counteracting the activation of two different signaling pathways involved in neoplastic transformation and progression, such as those activated by ErbB and Hh signaling, is more effective than the single treatments in reducing MM growth in vitro and in vivo. This study may have clinical implications for the development of targeted therapy approaches for MM.


Assuntos
Receptores ErbB , Mesotelioma Maligno , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Proteínas Hedgehog , Humanos , Camundongos , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco
16.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613691

RESUMO

Cancer cells may acquire resistance to stress signals and reprogram metabolism to meet the energetic demands to support their high proliferation rate and avoid death. Hence, targeting nutrient dependencies of cancer cells has been suggested as a promising anti-cancer strategy. We explored the possibility of killing breast cancer (BC) cells by modifying nutrient availability. We used in vitro models of BC (MCF7 and MDA-MB-231) that were maintained with a low amount of sulfur amino acids (SAAs) and a high amount of oxidizable polyunsatured fatty acids (PUFAs). Treatment with anti-apoptotic, anti-ferroptotic and antioxidant drugs were used to determine the modality of cell death. We reproduced these conditions in vivo by feeding BC-bearing mice with a diet poor in proteins and SAAs and rich in PUFAs (LSAA/HPUFA). Western blot analysis, qPCR and histological analyses were used to assess the anti-cancer effects and the molecular pathways involved. We found that BC cells underwent oxidative damage to DNA and proteins and both apoptosis and ferroptosis were induced. Along with caspases-mediated PARP1 cleavage, we found a lowering of the GSH-GPX4 system and an increase of lipid peroxides. A LSAA/HPUFA diet reduced tumor mass and its vascularization and immune cell infiltration, and induced apoptosis and ferroptotic hallmarks. Furthermore, mitochondrial mass was found to be increased, and the buffering of mitochondrial reactive oxygen species limited GPX4 reduction and DNA damage. Our results suggest that administration of custom diets, targeting the dependency of cancer cells on certain nutrients, can represent a promising complementary option for anti-cancer therapy.


Assuntos
Apoptose , Neoplasias da Mama , Dieta , Animais , Camundongos , Morte Celular , Ácidos Graxos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Peroxidação de Lipídeos , Peróxidos Lipídicos , Células MCF-7 , Células MDA-MB-231 , Humanos , Neoplasias da Mama/patologia
17.
Sci Rep ; 11(1): 19051, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561494

RESUMO

Head and neck cancer (HNC) has frequently an aggressive course for the development of resistance to standard chemotherapy. Thus, the use of innovative therapeutic drugs is being assessed. Bortezomib is a proteasome inhibitor with anticancer effects. In vitro antitumoral activity of Bortezomib was investigated employing human tongue (SCC-15, CAL-27), pharynx (FaDu), salivary gland (A-253) cancer cell lines and a murine cell line (SALTO-5) originated from a salivary gland adenocarcinoma arising in BALB-neuT male mice transgenic for the oncogene neu. Bortezomib inhibited cell proliferation, triggered apoptosis, modulated the expression and activation of pro-survival signaling transduction pathways proteins activated by ErbB receptors and inhibited proteasome activity in vitro. Intraperitoneal administration of Bortezomib delayed tumor growth of SALTO-5 cells transplanted in BALB-neuT mice, protracted mice survival and adjusted tumor microenvironment by increasing tumor-infiltrating immune cells (CD4+ and CD8+ T cells, B lymphocytes, macrophages, and Natural Killer cells) and by decreasing vessels density. In addition, Bortezomib modified the expression of proteasome structural subunits in transplanted SALTO-5 cells. Our findings further support the use of Bortezomib for the treatment of HNC and reveal its ineffectiveness in counteracting the activation of deregulated specific signaling pathways in HNC cell lines when resistance to proteasome inhibition is developed.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Linfócitos do Interstício Tumoral/patologia , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microambiente Tumoral/efeitos dos fármacos
18.
Cancers (Basel) ; 13(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34503178

RESUMO

High-risk neuroblastoma (NB) is a rare childhood cancer whose aggressiveness is due to a variety of chromosomal genetic aberrations, including those conferring immune evasion. Indeed, NB cells adopt several molecular strategies to evade recognition by the immune system, including the downregulation of ligands for NK-cell-activating receptors. To date, while molecular strategies aimed at enhancing the expression of ligands for NKG2D- and DNAM-1-activating receptors have been explored, no evidence has been reported on the immunomodulatory mechanisms acting on the expression of death receptors such as Fas in NB cells. Here, we demonstrated that transient overexpression of the NF-kB p65 subunit upregulates the surface expression of Fas and PVR, the ligand of DNAM-1, thus making NB cell lines significantly more susceptible to NK-cell-mediated apoptosis, recognition, and killing. In contrast, IFNγ and TNFα treatment, although it induced the upregulation of FAS in NB cells and consequently enhanced NK-cell-mediated apoptosis, triggered immune evasion processes, including the strong upregulation of MHC class I and IDO1, both of which are involved in mechanisms leading to the impairment of a proper NK-cell-mediated killing of NB. In addition, high-resolution array CGH analysis performed in our cohort of NB patients revealed that the loss of FAS and/or PVR genes correlated with low survival independently of the disease stage. Our data identify the status of the FAS and PVR genes as prognostic biomarkers of NB that may predict the efficacy of NK-cell-based immunotherapy of NB. Overall, restoration of surface expression of Fas and PVR, through transient upregulation of NF-kB, may be a clue to a novel NK-cell-based immunotherapy of NB.

19.
Curr Opin Pharmacol ; 60: 315-330, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520942

RESUMO

Polyphenols are a wide class of natural substances, pleiotropic molecules capable of modulating several processes, involved in the humoral and cellular immune response. The activation, differentiation of B cells, and production of antibodies to protein antigens by plasma cells depend on T helper (TH) CD4+ cells and secreted cytokines. Cancer, infectious, allergic, and autoimmune diseases are characterized by an imbalance of TH1/TH2 immunity and abnormal activation of the humoral response. Accordingly, polyphenols modulate the TH1/TH2 ratio, the secretion of multiple cytokines, the levels of antibodies, and therefore could contribute to recovering the state of health in these diseases. In this review, we summarize the current knowledge on the effects of polyphenols in modulating the humoral response in cancer, infectious and allergic diseases and in autoimmunity by affecting the activity of TH1 and TH2 cells.


Assuntos
Doenças Autoimunes , Hipersensibilidade , Infecções , Neoplasias , Polifenóis , Doenças Autoimunes/imunologia , Citocinas , Humanos , Hipersensibilidade/imunologia , Infecções/imunologia , Neoplasias/imunologia , Polifenóis/farmacologia , Células Th1/imunologia , Células Th2/imunologia
20.
Semin Cancer Biol ; 72: 65-75, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-31698088

RESUMO

Breast cancer is both the most common type of cancer and the most frequent cause of cancer mortality in women, mainly because of its heterogeneity and limited immunogenicity. The aim of specific active cancer immunotherapy is to stimulate the host's immune response against cancer cells directly using a vaccine platform carrying one or more tumor antigens. In particular, the ideal tumor antigen should be able to elicit T cell and B cell responses, be specific for the tumor and be expressed at high levels on cancer cells. Neoantigens are ideal targets for immunotherapy because they are exclusive to individual patient's tumors, are absent in healthy tissues and are not subject to immune tolerance mechanisms. Thus, neoantigens should generate a specific reaction towards tumors since they constitute the largest fraction of targets of tumor-infiltrating T cells. In this review, we describe the technologies used for neoantigen discovery, the heterogeneity of neoantigens in breast cancer and recent studies of breast cancer immunotherapy targeting neoantigens.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Vacinas Anticâncer/imunologia , Imunidade , Imunoterapia/métodos , Animais , Antígenos de Neoplasias/classificação , Neoplasias da Mama/genética , Vacinas Anticâncer/administração & dosagem , Feminino , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA