Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2315510121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133851

RESUMO

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, consequently altering their stability, folding patterns, and self-assembling behavior. Despite much scientific progress, our current understanding of the effects of ultrasound on the self-assembly of amyloidogenic proteins remains limited. In the present study, we demonstrate that when the amplitude of the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, which is sufficient for primary nucleation; this has been revealed by MD. These ultrasound-induced structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from natively folded monomeric lysozyme protein, in a controlled manner, until it reaches a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed either under the action of sound or from natively fibrillated lysozyme, share identical structural characteristics. Thus, these results provide insights into the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential use of sound energy in protein chemistry.


Assuntos
Amiloide , Muramidase , Amiloide/química , Amiloide/metabolismo , Muramidase/química , Muramidase/metabolismo , Dobramento de Proteína , Temperatura , Ondas Ultrassônicas , Simulação de Dinâmica Molecular
2.
ChemSusChem ; : e202401148, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023515

RESUMO

Silk fibers constitute a class of protein building blocks capable of functionalization and reprocessing into various material formats. The properties of these fibers are typically affected by the intense thermal treatments needed to remove the sericin gum coating layer. Additionally, their mechanical characteristics are often misinterpreted by assuming the cross-sectional area is a perfect circle. The thermal treatments impact not only the mechanics of the fibers but also the structure of the resolubilized protein, thereby limiting the performance of the resulting silk-based materials. To mitigate these limitations, we explored varying alkali conditions at low temperatures for surface treatment, effectively removing the sericin gum layer while preserving the molecular structure of the fibroin protein, thus, maintaining the hierarchical integrity of the exposed fibroin microfiber core. The precise determination of the initial CSA of the asymmetrical silk fibers led to a comprehensive analysis of their mechanical properties. Our findings indicate that the alkali surface treatment raised the Young's modulus and tensile strength by increasing the fibers' crystallinity by approximately 40% and 50%, respectively, without compromising their strain. We have shown that this treatment facilitated further production of high-purity soluble silk with rheological and self-assembly characteristics comparable to those of native silk.

3.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745331

RESUMO

Mechanical energy, specifically in the form of ultrasound, can induce pressure variations and temperature fluctuations when applied to an aqueous media. These conditions can both positively and negatively affect protein complexes, influencing their stability, folding patterns, and self-assembling behavior. Regarding understanding the effects of ultrasound on the self-assembly of amyloidogenic proteins, our knowledge remains quite limited. In our recent work, we established the boundary conditions under which sound energy can either cause damage or induce only negligible changes in the structure of protein species. In the present study, we demonstrate that when the delivered ultrasonic energy is sufficiently low, it can induce refolding of specific motifs in protein monomers, as it has been revealed by MD, which is sufficient for primary nucleation, characterized by adopting a hydrogen-bonded ß -sheet-rich structure. These structural changes are initiated by pressure perturbations and are accelerated by a temperature factor. Furthermore, the prolonged action of low-amplitude ultrasound enables the elongation of amyloid protein nanofibrils directly from monomeric lysozyme proteins, in a controlled manner, until they reach a critical length. Using solution X-ray scattering, we determined that nanofibrillar assemblies, formed under the influence of ultrasound energy and natively fibrillated lysozyme, share identical structural characteristics. Thus, these results contribute to our understanding of the effects of ultrasound on fibrillar protein self-assembly and lay the foundation for the potential exploitation of sound energy in a protein chemistry environment.

4.
Proc Natl Acad Sci U S A ; 120(3): e2212849120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630452

RESUMO

Protein folding is crucial for biological activity. Proteins' failure to fold correctly underlies various pathological processes, including amyloidosis, the aggregation of insoluble proteins (e.g., lysozymes) in organs. The exact conditions that trigger the structural transition of amyloids into ß-sheet-rich aggregates are poorly understood, as is the case for the amyloidogenic self-assembly pathway. Ultrasound is routinely used to destabilize a protein's structure and enhance amyloid growth. Here, we report on an unexpected ultrasound effect on lysozyme amyloid species at different stages of aggregation: ultrasound-induced structural perturbation gives rise to nonamyloidogenic folds. Our infrared and X-ray analyses of the chemical, mechanical, and thermal effects of sound on lysozyme's structure found, in addition to the expected ultrasound-induced damage, evidence of irreversible disruption of the ß-sheet fold of fibrillar lysozyme resulting in their structural transformation into monomers with no ß-sheets. This structural transition is reflected in changes in the kinetics of protein self-assembly, namely, either prolonged nucleation or accelerated fibril growth. Using solution X-ray scattering, we determined the structure, the mass fraction of lysozyme monomer, and the morphology of its filamentous assemblies formed under different sound parameters. A nanomechanical analysis of ultrasound-modified protein assemblies revealed a correlation between the ß-sheet content and elastic modulus of the protein material. Suppressing one of the ultrasound-derived effects allowed us to control the structural transformations of lysozyme. Overall, our comprehensive investigation establishes the boundary conditions under which ultrasound damages protein structure and fold. This knowledge can be utilized to impose medically desirable structural modifications on amyloid ß-sheet-rich proteins.


Assuntos
Amiloidose , Muramidase , Humanos , Muramidase/química , Peptídeos beta-Amiloides/química , Amiloide/química , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA