Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39314273

RESUMO

Emerging data have highlighted a correlation between microbiome composition and cancer immunotherapy outcome. While commensal bacteria and their metabolites are known to modulate the host environment, contradictory effects and a lack of mechanistic understanding impede the translation of microbiome-based therapies into the clinic. In this study, we demonstrate that abundance of the commensal metabolite pentanoate is predictive for survival of chimeric antigen receptor (CAR) T cell patients in two independent cohorts. Its implementation in the CAR T cell manufacturing workflow overcomes solid tumor microenvironments in immunocompetent cancer models by hijacking the epigenetic-metabolic crosstalk, reducing exhaustion and promoting naive-like differentiation. While synergy of clinically relevant drugs mimicked the phenotype of pentanoate-engineered CAR T cells in vitro, in vivo challenge showed inferior tumor control. Metabolic tracing of 13C-pentanoate revealed citrate generation in the TCA cycle via the acetyl- and succinyl-CoA entry points as a unique feature of the C5 aliphatic chain. Inhibition of the ATP-citrate lyase, which links metabolic output and histone acetylation, led to accumulation of pentanoate-derived citrate from the succinyl-CoA route and decreased functionality of SCFA-engineered CAR T cells. Our data demonstrate that microbial metabolites are incorporated as epigenetic imprints and implementation into CAR T cell production might serve as embodiment of the microbiome-host axis benefits for clinical applications.

2.
Nat Immunol ; 25(10): 1830-1844, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39198632

RESUMO

The efficacy of antitumor immunity is associated with the metabolic state of cytotoxic T cells, which is sensitive to the tumor microenvironment. Whether ionic signals affect adaptive antitumor immune responses is unclear. In the present study, we show that there is an enrichment of sodium in solid tumors from patients with breast cancer. Sodium chloride (NaCl) enhances the activation state and effector functions of human CD8+ T cells, which is associated with enhanced metabolic fitness. These NaCl-induced effects translate into increased tumor cell killing in vitro and in vivo. Mechanistically, NaCl-induced changes in CD8+ T cells are linked to sodium-induced upregulation of Na+/K+-ATPase activity, followed by membrane hyperpolarization, which magnifies the electromotive force for T cell receptor (TCR)-induced calcium influx and downstream TCR signaling. We therefore propose that NaCl is a positive regulator of acute antitumor immunity that might be modulated for ex vivo conditioning of therapeutic T cells, such as CAR T cells.


Assuntos
Citotoxicidade Imunológica , Receptores de Antígenos de Linfócitos T , Cloreto de Sódio , Microambiente Tumoral , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , Feminino , Cloreto de Sódio/farmacologia , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Transdução de Sinais
3.
Open Biol ; 12(8): 220058, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35975649

RESUMO

Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types, including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatio-temporal regulation in megakaryocytes (MKs) is lacking. Optogenetics is a technique which allows spatio-temporal manipulation of molecular events in living cells or organisms. We took advantage of this method and expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide-triggered cGMP generation in BM MKs. In summary, we established for the first-time optogenetics in primary MKs and show that PDE5 is the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.


Assuntos
Guanosina Monofosfato , Megacariócitos , Blastocladiella , GMP Cíclico/metabolismo , Megacariócitos/metabolismo , Óxido Nítrico/metabolismo , Optogenética , Diester Fosfórico Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA