Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 4327-4333, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297636

RESUMO

A stack of a dielectric planar waveguide with a Kerr-type nonlinearity, sandwiched between two oxide-based helical multiferroic layers is shown to support electrically-controlled chiral solitons. These findings follow from analytical and full numerical simulations. The analytical scheme delivers explicit material parameters for the guided mode soliton and unveils how the soliton propagation characteristics are controlled by tuning the multiferroic helicity and amplitude of the injected electromagnetic wave. Silicon and CS2 are considered as the optical media in the guiding region enclosed by the multiferroic slabs. CS2 has very similar nonlinearity characteristics to silicon but in the linear regime it exhibits a smaller refractive index in the THz frequency range. The scattering simulations are performed using our developed numerical code based on the rigorous coupled wave method and the results for the dispersion curve for the guided mode agree very well with the analytical formula that we derive in this work. The results demonstrate a case of nonlinear pulse generation with field-controlled, nontrivial topological properties.

2.
Phys Rev Lett ; 131(18): 186705, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977646

RESUMO

Magnons serve as a testing ground for fundamental aspects of Hermitian and non-Hermitian wave mechanics and are of high relevance for information technology. This study presents setups for realizing spatiotemporally driven parity-time- (PT) symmetric magnonics based on coupled magnetic waveguides and magnonic crystals. A charge current in a metal layer with strong spin-orbit coupling sandwiched between two insulating magnetic waveguides leads to gain or loss in the magnon amplitude depending on the directions of the magnetization and the charge currents. When gain in one waveguide is balanced by loss in the other waveguide, a PT-symmetric system hosting non-Hermitian degeneracies [or exceptional points (EPs)] is realized. For ac current, multiple EPs appear for a certain gain-loss strength and mark the boundaries between the preserved PT-symmetry and the broken PT-symmetry phases. The number of islands of broken PT-symmetry phases and their extensions is tunable by the frequency and the strength of the spacer current. At EP and beyond, the induced and amplified magnetization oscillations are strong and self-sustained. In particular, these magnetization auto-oscillations in a broken PT-symmetry phase occur at low current densities and do not require further adjustments such as tilt angle between electric polarization and equilibrium magnetization direction in spin-torque oscillators, pointing to a new design of these oscillators and their utilization in computing and sensorics. It is also shown how the periodic gain-loss mechanism allows for the generation of high-frequency spin waves with low-frequency currents. For spatially periodic gain and loss acting on a magnonic crystal, magnon modes approaching each other at the Brillouin-zone boundaries are highly susceptible to PT symmetry, allowing for a wave-vector-resolved experimental realization at very low currents.

3.
Opt Express ; 31(16): 26591-26598, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710516

RESUMO

Realization of externally tunable chiral photonic sources and resonators is essential for studying and functionalizing chiral matter. Here, oxide-based stacks of helical multiferroic layers are shown to provide a suitable, electrically-controllable medium to efficiently trap and filter purely chiral photonic fields. Using analytical and rigorous coupled wave numerical methods we simulate the dispersion and scattering characteristics of electromagnetic waves in multiferroic heterostructures. The results evidence that due to scattering from the spin helix texture, only the modes with a particular transverse wavenumber form standing chiral waves in the cavity, whereas all other modes leak out from the resonator. An external static electric field enables a nonvolatile and energy-efficient control of the vector spin chirality associated with the oxide multilayers, which tunes the photonic chirality density in the resonator.

4.
Phys Rev Lett ; 131(4): 045001, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37566861

RESUMO

We demonstrate the generation of extreme-ultraviolet (XUV) free-electron laser (FEL) pulses with time-dependent polarization. To achieve polarization modulation on a femtosecond timescale, we combine two mutually delayed counterrotating circularly polarized subpulses from two cross-polarized undulators. The polarization profile of the pulses is probed by angle-resolved photoemission and above-threshold ionization of helium; the results agree with solutions of the time-dependent Schrödinger equation. The stability limit of the scheme is mainly set by electron-beam energy fluctuations, however, at a level that will not compromise experiments in the XUV. Our results demonstrate the potential to improve the resolution and element selectivity of methods based on polarization shaping and may lead to the development of new coherent control schemes for probing and manipulating core electrons in matter.

5.
J Phys Condens Matter ; 35(28)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37044101

RESUMO

The anomalous Nernst coefficient (ANC) for transition-metal dichalcogenide (TMD) bilayers is studied with a focus on the interplay between layer pseudospin, spin, and valley degrees of freedom when electric and exchange fields are present. Breaking the inversion and time reversal symmetries via respectively electric and exchange fields results for bilayer TMDs in a spin-valley-layer polarized total ANC. Conditions are determined for controlling the spin, valley, and layer-resolved contributions via electric field tuning. Our results demonstrate the control of layer degree of freedom in bilayer TMDs magnetoelectrically which is of relevance for possible applications in spin/valley caloritronics.

6.
Sci Rep ; 12(1): 15610, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114208

RESUMO

Metastructures of spintronic THz emitters can be engineered to have a well-defined topology characterized by a topological charge. The emitted THz radiation possesses a phase-locked transversal and longitudinal components with the ratio of which being tunable by the topological charge of the underlying metastructure. The THz fields so produced are employed to drive and spatio-temporally modulate the superconducting order parameter in a type II superconductor. Using a time-dependent Landau-Ginzburg approach, it is demonstrated how the topology of the THz fields is reflected in a texturing of the superconducting phase and density. Full numerical simulations illustrate the emergence and the nanoscale steering of Abrikosov vortices as well as the local modification of the superconducting density and transport properties of nanoscale samples with different geometries. The study highlights the potential of metamaterials based on spintronic THz emitters as a coherent source for spatially and vectorially modulated THz radiation.

7.
Nat Commun ; 13(1): 4939, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999206

RESUMO

Non-linear processes are a key feature in the emerging field of spin-wave based information processing and allow to convert uniform spin-wave excitations into propagating modes at different frequencies. Recently, the existence of non-linear magnons at half-integer multiples of the driving frequency has been predicted for Ni80Fe20 at low bias fields. However, it is an open question under which conditions such non-linear spin waves emerge coherently and how they may be used in device structures. Usually non-linear processes are explored in the small modulation regime and result in the well known three and four magnon scattering processes. Here we demonstrate and image a class of spin waves oscillating at half-integer harmonics that have only recently been proposed for the strong modulation regime. The direct imaging of these parametrically generated magnons in Ni80Fe20 elements allows to visualize their wave vectors. In addition, we demonstrate the presence of two degenerate phase states that may be selected by external phase-locking. These results open new possibilities for applications such as spin-wave sources, amplifiers and phase-encoded information processing with magnons.

8.
Opt Lett ; 47(11): 2794-2797, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648932

RESUMO

The thickness-dependent multimodal nature of three-dimensional (3D) coupled photonic crystal waveguides is investigated with the aim of realizing a medium for controlled optical gap soliton formation in the slow light regime. In the linear case, spectral properties of the modes (dispersion diagrams), location of the gap regions versus the thickness of the 3D photonic crystal, and the near-field distributions at frequencies in the slow light region are analyzed using a full-wave electromagnetic solver. In the nonlinear regime (Kerr-type nonlinearity), we infer an existence of crystal-thickness-dependent temporal solitons with stable pulse envelope and use the solitonic pulses for driving quantum transitions in localized quantum systems within the photonic crystal waveguide. The results may be useful for applications in optical communications, multiplexing systems, nonlinear physics, and ultrafast spectroscopy.

9.
Phys Rev Lett ; 128(15): 157205, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499884

RESUMO

Triggering and switching magnetic moments is of key importance for applications ranging from spintronics to quantum information. A noninvasive ultrafast control at the nanoscale is, however, an open challenge. Here, we propose a novel laser-based scheme for generating atomic-scale charge current loops within femtoseconds. The associated orbital magnetic moments remain ferromagnetically aligned after the laser pulses have ceased and are localized within an area that is tunable via laser parameters and can be chosen to be well below the diffraction limit of the driving laser field. The scheme relies on tuning the phase, polarization, and intensities of two copropagating Gaussian and vortex laser pulses, allowing us to control the spatial extent, direction, and strength of the atomic-scale charge current loops induced in the irradiated sample upon photon absorption. In the experiment we used He atoms driven by an ultraviolet and infrared vortex-beam laser pulses to generate current-carrying Rydberg states and test for the generated magnetic moments via dichroic effects in photoemission. Ab initio quantum dynamic simulations and analysis confirm the proposed scenario and provide a quantitative estimate of the generated local moments.

10.
Phys Rev Lett ; 127(12): 127601, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597074

RESUMO

We study the dispersion and scattering properties of electromagnetic modes coupled to a helically ordered spin lattice hosted by a dielectric oxide with a ferroelectric polarization driven by vector spin chirality. Quasianalytical approaches and full-fledged numerics evidence the formation of a chiral magnonic photonic band gap and the presence of gate-voltage dependent circular dichroism in the scattering of electromagnetic waves from the lattice. Gating couples to the emergent ferroelectric polarization and hence, to the underlying vector-spin chirality. The theory relies on solving simultaneously Maxwell's equations coupled to the driven localized spins taking into account their spatial topology and spatial anisotropic interactions. The developed approach is applicable to various settings involving noncollinear spins and multiferroic systems with potential applications in noncollinear magnetophotonics.

11.
Nanomaterials (Basel) ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064782

RESUMO

Quantum scars refer to an enhanced localization of the probability density of states in the spectral region with a high energy level density. Scars are discussed for a number of confined pure and impurity-doped electronic systems. Here, we studied the role of spin on quantum scarring for a generic system, namely a semiconductor-heterostructure-based two-dimensional electron gas subjected to a confining potential, an external magnetic field, and a Rashba-type spin-orbit coupling. Calculating the high energy spectrum for each spin channel and corresponding states, as well as employing statistical methods known for the spinless case, we showed that spin-dependent scarring occurs in a spin-coupled electronic system. Scars can be spin mixed or spin polarized and may be detected via transport measurements or spin-polarized scanning tunneling spectroscopy.

12.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450962

RESUMO

We study the transport and the superconducting dynamics in a layer of type II superconductor (SC) with a normal top layer that hosts a helical magnetic ordering that gives rise to spin-current-driven ferroelectric polarization. Proximity effects akin to this heterostructure result in an anisotropic supercurrent transport and modify the dynamic properties of vortices in the SC. The vortices can be acted upon and controlled by electric gating or other means that couple to the spin ordering in the top layer, which, in turn, alter the superconducting/helical magnet coupling characteristics. We demonstrate, using the time dependent Ginzburg-Landau approach, how the spin helicity of the top layer can be utilized for pinning and guiding the vortices in the superconducting layer.

13.
Phys Rev Lett ; 125(19): 196801, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216572

RESUMO

We investigate spin-charge conversion phenomena in hybrid structures of topological insulator thin films and magnetic insulators. We find an anisotropic inverse spin-galvanic effect that yields a highly tunable spin-orbit torque. Concentrating on the quasiballistic limit, we also predict a giant anisotropic magnetoresistance at low dopings. These effects, which have no counterparts in thick topological insulators, depend on the simultaneous presence of the hybridization between the surface states and the in-plane magnetization. Both the inverse spin-galvanic effect and anisotropic magnetoresistance exhibit a strong dependence on the magnetization and the Fermi level position and can be used for spintronics and spin-orbit-torque-based applications at the nanoscale.

14.
Nat Commun ; 11(1): 5663, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168811

RESUMO

Tuning the magneto optical response and magnetic dynamics are key elements in designing magnetic metamaterials and devices. This theoretical study uncovers a highly effective way of controlling the magnetic permeability via shaping the magnonic properties of coupled magnetic waveguides separated by a nonmagnetic spacer with strong spin-orbit interaction (SOI). We demonstrate how a spacer charge current leads to enhancement of magnetic damping in one waveguide and a decrease in the other, constituting a bias-controlled magnetic parity-time (PT) symmetric system at the verge of the exceptional point where magnetic gains/losses are balanced. We find phenomena inherent to PT-symmetric systems and SOI-driven interfacial structures, including field-controlled magnon power oscillations, nonreciprocal propagation, magnon trapping and enhancement as well as an increased sensitivity to perturbations and abrupt spin reversal. The results point to a new route for designing magnonic waveguides and microstructures with enhanced magnetic response.

15.
Sci Rep ; 10(1): 20400, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230140

RESUMO

Topologically distinct magnetic structures like skyrmions, domain walls, and the uniformly magnetized state have multiple applications in logic devices, sensors, and as bits of information. One of the most promising concepts for applying these bits is the racetrack architecture controlled by electric currents or magnetic driving fields. In state-of-the-art racetracks, these fields or currents are applied to the whole circuit. Here, we employ micromagnetic and atomistic simulations to establish a concept for racetrack memories free of global driving forces. Surprisingly, we realize that mixed sequences of topologically distinct objects can be created and propagated over far distances exclusively by local rotation of magnetization at the sample boundaries. We reveal the dependence between chirality of the rotation and the direction of propagation and define the phase space where the proposed procedure can be realized. The advantages of this approach are the exclusion of high current and field densities as well as its compatibility with an energy-efficient three-dimensional design.

16.
Opt Lett ; 45(21): 5970-5973, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137043

RESUMO

We study theoretically the transfer of the light field orbital angular momentum (OAM) to propagating electrons upon photoemission from quantum well states. Irradiation with a Laguerre-Gaussian mode laser pulse elevates the quantum well state into a laser-dressed Volkov state that can be detected in an angular and energy-resolved manner while varying the characteristics of the driving fields. We derive the photoemission cross section for this process using the S-matrix theory and illustrate how the OAM is embodied in the photoelectron angular pattern with the aid of numerical calculations. The results point to a new type of time-resolved spectroscopy, in which the electronic orbital motion is addressed exclusively, with the potential for a new insight in spin-orbitally or orbitally coupled systems.

17.
Nat Commun ; 11(1): 4095, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796844

RESUMO

Charge excitations across an electronic band gap play an important role in opto-electronics and light harvesting. In contrast to conventional semiconductors, studies of above-band-gap photoexcitations in strongly correlated materials are still in their infancy. Here we reveal the ultrafast dynamics controlled by Hund's physics in strongly correlated photoexcited NiO. By combining time-resolved two-photon photoemission experiments with state-of-the-art numerical calculations, an ultrafast (≲10 fs) relaxation due to Hund excitations and related photo-induced in-gap states are identified. Remarkably, the weight of these in-gap states displays long-lived coherent THz oscillations up to 2 ps at low temperature. The frequency of these oscillations corresponds to the strength of the antiferromagnetic superexchange interaction in NiO and their lifetime vanishes slightly above the Néel temperature. Numerical simulations of a two-band t-J model reveal that the THz oscillations originate from the interplay between local many-body excitations and antiferromagnetic spin correlations.

18.
Opt Express ; 28(13): 19469-19481, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672223

RESUMO

We study theoretically the electron quantum dynamics in atoms driven by intense IR laser pulses that are phase and/or polarization structured. The extremely non-linear electron dynamics causes high harmonic emission, which we calculate, analyze, and characterize. Results are presented for three different types of structured lasers: radially polarized and azimuthally polarized beams and optical skyrmions. We identify a topological index that is inherent to the driving pulse topology and is taken over by the high harmonics. All harmonics are found to have the same topological index. For vector IR pulses as driving fields, the far-field emitted beam tightens with a higher topological order and remains unchanged when the atom is driven by an optical skyrmion.

19.
Opt Express ; 28(12): 18317-18331, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680030

RESUMO

We present a conceptual study on the realization of functional and easily scalable all-optical NOT, AND and NAND logic gates using bandgap solitons in coupled photonic crystal waveguides. The underlying structure consists of a planar air-hole type photonic crystal with a hexagonal lattice of air holes in crystalline silicon (c-Si) as the nonlinear background material. The remaining logical operations can be performed using combinations of these three logic gates. A unique feature of the proposed working scheme is that it operates in the true time-domain, enabling temporal solitons to maintain a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized, paving the way to multiple-input all-optical logic gates for ultrafast full-optical digital signal processing. In the suggested setup, there is no need to amplify the output signal after each operation, which can be directly used as a new input signal for another logical operation. The feasibility and efficiency of the proposed logic gates as well as their scalability is demonstrated using our original rigorous theoretical formalism together with full-wave computational electromagnetics.

20.
Opt Express ; 27(21): 29558-29566, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684215

RESUMO

Propagation of the temporal soliton in Kerr-type photonic crystal waveguide is investigated theoretically and numerically. An expression describing the evolution of the envelope of the soliton based on the full-wave modal analysis, taking into account all space-harmonics, is rigorously obtained. The nonlinear coefficient is derived, for the first time, based on a modification of the refractive indices for each space-harmonic due to the Kerr-type nonlinearity. For illustrating the general formulation and results, we performed extensive computational electromagnetics simulations for the propagation of gap solitons in an experimentally feasible photonic crystal waveguides, endorsing the correctness and usefulness of the proposed formalism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA