Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 19(26): e2208055, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949498

RESUMO

Synthesis of high quality colloidal Cerium(III) doped yttrium aluminum garnet (Y3 Al5 O12 :Ce3+ , "YAG:Ce") nanoparticles (NPs) meeting simultaneously both ultra-small size and high photoluminescence (PL) performance is challenging, as generally a particle size/PL trade-off has been observed for this type of nanomaterials. The glycothermal route is capable to yield ultra-fine crystalline colloidal YAG:Ce nanoparticles with a particle size as small as 10 nm but with quantum yield (QY) no more than 20%. In this paper, the first ultra-small YPO4 -YAG:Ce nanocomposite phosphor particles having an exceptional QY-to-size performance with an QY up to 53% while maintaining the particle size ≈10 nm is reported. The NPs are produced via a phosphoric acid- and extra yttrium acetate-assisted glycothermal synthesis route. Localization of phosphate and extra yttrium entities with respect to cerium centers in the YAG host has been determined by fine structural analysis techniques such as X-ray diffration (XRD), solid state nuclear magnetic resonance (NMR), and high resolution scanning transmission electron microscopy (HR-STEM), and shows distinct YPO4 and YAG phases. Finally, a correlation between the additive-induced physico-chemical environment change around cerium centers and the increasing PL performance has been suggested based on electron paramagnetic resonance (EPR), X-ray photoelectron spectrometry (XPS) data, and crystallographic simulation studies.

2.
Biology (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671752

RESUMO

Modern urban human activities are largely restricted to the indoors, deprived of direct sunlight containing visible and near-infrared (NIR) wavelengths at high irradiance levels. Therapeutic exposure to doses of red and NIR, known as photobiomodulation (PBM), has been effective for a broad range of conditions. In a double-blind, randomized, placebo-controlled study, we aimed to assess the effects of a PBM home set-up on various aspects of well-being, health, sleep, and circadian rhythms in healthy human subjects with mild sleep complaints. The effects of three NIR light (850 nm) doses (1, 4, or 6.5 J·cm-2) were examined against the placebo. Exposure was presented five days per week between 9:30 am and 12:30 pm for four consecutive weeks. The study was conducted in both summer and winter to include seasonal variation. The results showed PBM treatment only at 6.5 J·cm-2 to have consistent positive benefits on well-being and health, specifically improving mood, reducing drowsiness, reducing IFN-γ, and resting heart rate. This was only observed in winter. No significant effects on sleep or circadian rhythms were noted. This study provides further evidence that adequate exposure to NIR, especially during low sunlight conditions, such as in the winter, can be beneficial for human health and wellness.

3.
ACS Photonics ; 8(6): 1784-1793, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34164566

RESUMO

Commercial lighting for ambient and display applications is mostly based on blue light-emitting diodes (LEDs) combined with phosphor materials that convert some of the blue light into green, yellow, orange, and red. Not many phosphor materials can offer stable output under high incident light intensities for thousands of operating hours. Even the most promising LED phosphors saturate in high-power applications, that is, they show decreased light output. The saturation behavior is often poorly understood. Here, we review three popular commercial LED phosphor materials, Y3Al5O12 doped with Ce3+, CaAlSiN3 doped with Eu2+, and K2SiF6 doped with Mn4+, and unravel their saturation mechanisms. Experiments with square-wave-modulated laser excitation reveal the dynamics of absorption and decay of the luminescent centers. By modeling these dynamics and linking them to the saturation of the phosphor output intensity, we distinguish saturation by ground-state depletion, thermal quenching, and ionization of the centers. We discuss the implications of each of these processes for LED applications. Understanding the saturation mechanisms of popular LED phosphors could lead to strategies to improve their performance and efficiency or guide the development of new materials.

4.
ACS Nano ; 15(6): 9987-9999, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34110780

RESUMO

Colloidal heteronanocrystals allow for the synergistic combination of properties of different materials. For example, spatial separation of the photogenerated electron and hole can be achieved by coupling different semiconductors with suitable band offsets in one single nanocrystal, which is beneficial for improving the efficiency of photocatalysts and photovoltaic devices. From this perspective, axially segmented semiconductor heteronanorods with a type-II band alignment are particularly attractive since they ensure the accessibility of both photogenerated charge carriers. Here, a two-step synthesis route to Cu2-xS/CuInS2 Janus-type heteronanorods is presented. The heteronanorods are formed by injection of a solution of preformed Cu2-xS seed nanocrystals in 1-dodecanethiol into a solution of indium oleate in oleic acid at 240 °C. By varying the reaction time, Janus-type heteronanocrystals with different sizes, shapes, and compositions are obtained. A mechanism for the formation of the heteronanocrystals is proposed. The first step of this mechanism consists of a thiolate-mediated topotactic, partial Cu+ for In3+ cation exchange that converts one of the facets of the seed nanocrystals into CuInS2. This is followed by homoepitaxial anisotropic growth of wurtzite CuInS2. The Cu2-xS seed nanocrystals also act as sacrificial Cu+ sources, and therefore, single composition CuInS2 nanorods are eventually obtained if the reaction is allowed to proceed to completion. The two-stage seeded growth method developed in this work contributes to the rational synthesis of Cu2-xS/CuInS2 heteronanocrystals with targeted architectures by allowing one to exploit the size and faceting of premade Cu2-xS seed nanocrystals to direct the growth of the CuInS2 segment.

5.
Chem Rev ; 120(24): 13461-13479, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33164489

RESUMO

The renowned yellow phosphor yttrium aluminum garnet (YAG) doped with trivalent cerium has found its way into applications in many forms: as powder of micron sized crystals, as a ceramic, and even as a single crystal. However, additional technological advancement requires providing this material in new form factors, especially in terms of particle size. Where many materials have been developed on the nanoscale with excellent optical properties (e.g., semiconductor quantum dots, perovskite nanocrystals, and rare earth doped phosphors), it is surprising that the development of nanocrystalline YAG:Ce is not as mature as for these other materials. Control over size and shape is still in its infancy, and optical properties are not yet at the same level as other materials on the nanoscale, even though YAG:Ce microcrystalline materials exceed the performance of most other materials. This review highlights developments in synthesis methods and mechanisms and gives an overview of the state of the art morphologies, particle sizes, and optical properties of YAG:Ce on the nanoscale.

6.
J Phys Chem Lett ; 11(3): 689-695, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31922751

RESUMO

Phosphors have been used successfully for both research and commercial applications for decades. Eu3+-doped materials are especially promising, because of their extremely stable, efficient, and narrow red emission lines. Although these emission properties are ideal for lighting applications, weak absorption in the blue spectral range has until now prevented the use of Eu3+-based phosphors in applications based on blue light-emitting diodes. Here, we demonstrate a sensitization mechanism of Eu3+ based on interparticle Förster resonance energy transfer (IFRET) between lanthanide-doped inorganic nanocrystals (NCs). Compared to co-doping different lanthanides in the same host crystal, IFRET allows an independent choice of host lattices for Eu3+ and its sensitizer while potentially greatly reducing metal-to-metal charge transfer quenching. We demonstrate IFRET between NCs, resulting in red Eu3+ emission upon blue excitation at 485 nm using LaPO4:Tb/LaPO4:Eu and LaPO4:Tb/YVPO4:Eu NC mixtures. These findings pave the way toward engineering blue-sensitized line emitters for solid-state lighting applications.

7.
ACS Nano ; 13(11): 12880-12893, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31617701

RESUMO

Nanoscale cation exchange (CE) has resulted in colloidal nanomaterials that are unattainable by direct synthesis methods. Aliovalent CE is complex and synthetically challenging because the exchange of an unequal number of host and guest cations is required to maintain charge balance. An approach to control aliovalent CE reactions is the use of a single reactant to both supply the guest cation and extract the host cation. Here, we study the application of GaCl3-L complexes [L = trioctylphosphine (TOP), triphenylphosphite (TPP), diphenylphosphine (DPP)] as reactants in the exchange of Cu+ for Ga3+ in Cu2-xS nanocrystals. We find that noncomplexed GaCl3 etches the nanocrystals by S2- extraction, whereas GaCl3-TOP is unreactive. Successful exchange of Cu+ for Ga3+ is only possible when GaCl3 is complexed with either TPP or DPP. This is attributed to the pivotal role of the Cu2-xS-GaCl3-L activated complex that forms at the surface of the nanocrystal at the onset of the CE reaction, which must be such that simultaneous Ga3+ insertion and Cu+ extraction can occur. This requisite is only met if GaCl3 is bound to a phosphine ligand, with a moderate bond strength, to allow facile dissociation of the complex at the nanocrystal surface. The general validity of this mechanism is demonstrated by using GaCl3-DPP to convert CuInS2 into (Cu,Ga,In)S2 nanocrystals, which increases the photoluminescence quantum yield 10-fold, while blue-shifting the photoluminescence into the NIR biological window. This highlights the general applicability of the mechanistic insights provided by our work.

8.
J Phys Chem Lett ; 10(7): 1600-1616, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883139

RESUMO

Colloidal nanocrystals of ternary I-III-VI2 semiconductors are emerging as promising alternatives to Cd- and Pb-chalcogenide nanocrystals because of their inherently lower toxicity, while still offering widely tunable photoluminescence. These properties make them promising materials for a variety of applications. However, the realization of their full potential has been hindered by both their underdeveloped synthesis and the poor understanding of their optoelectronic properties, whose origins are still under intense debate. In this Perspective, we provide novel insights on the latter aspect by critically discussing the accumulated body of knowledge on I-III-VI2 nanocrystals. From our analysis, we conclude that the luminescence in these nanomaterials most likely originates from the radiative recombination of a delocalized conduction band electron with a hole localized at the group-I cation, which results in broad bandwidths, large Stokes shifts, and long exciton lifetimes. Finally, we highlight the remaining open questions and propose experiments to address them.

9.
Chem Mater ; 30(11): 3836-3846, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29910536

RESUMO

We present the synthesis of colloidal anisotropic Cu2-x Se nanocrystals (NCs) with excellent size and shape control, using the unexplored phosphine-free selenium precursor 1-dodecaneselenol (DDSe). This precursor forms lamellar complexes with Cu(I) that enable tailoring the NC morphology from 0D polyhedral to highly anisotropic 2D shapes. The Cu2-x Se NCs are subsequently used as templates in postsynthetic cation exchange reactions, through which they are successfully converted to CdSe and CuInSe2 quantum dots, nanoplatelets, and ultrathin nanosheets. The shape of the template hexagonal nanoplatelets is preserved during the cation exchange reaction, despite a substantial reorganization of the anionic sublattice, which leads to conversion of the tetragonal umangite crystal structure of the parent Cu2-x Se NCs into hexagonal wurtzite CdSe and CuInSe2, accompanied by a change of both the thickness and the lateral dimensions of the nanoplatelets. The crystallographic transformation and reconstruction of the product NCs are attributed to a combination of the unit cell dimensionalities of the parent and product crystal phases and an internal ripening process. This work provides novel tools for the rational design of shape-controlled colloidal anisotropic Cu2-x Se NCs, which, besides their promising optoelectronic properties, also constitute a new family of cation exchange templates for the synthesis of shape-controlled NCs of wurtzite CdSe, CuInSe2, and other metal selenides that cannot be attained through direct synthesis approaches. Moreover, the insights provided here are likely applicable also to the direct synthesis of shape-controlled NCs of other metal selenides, since DDSe may be able to form lamellar complexes with several other metals.

10.
Chem Mater ; 30(7): 2400-2413, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29657360

RESUMO

ZnS shelling of I-III-VI2 nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 °C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2) and high reaction temperatures (210 °C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.

11.
J Phys Chem Lett ; 8(17): 4077-4090, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28799764

RESUMO

Research on ultrathin nanomaterials is one of the fastest developing areas in contemporary nanoscience. The field of ultrathin one- (1D) and two-dimensional (2D) colloidal nanocrystals (NCs) is still in its infancy, but offers the prospect of production of ultrathin nanomaterials in liquid-phase at relatively low costs, with versatility in terms of composition, size, shape, and surface control. In this Perspective, the state of the art in the field is concisely outlined and critically discussed to highlight the essential concepts and challenges. We start by presenting a brief overview of the ultrathin colloidal 1D and 2D semiconductor NCs prepared to date, after which the synthesis strategies and formation mechanisms of both 1D and 2D NCs are discussed. The properties of these low-dimensional materials are then reviewed, with emphasis on the optical properties of luminescent NCs. Finally, the future prospects for the field are addressed.

12.
Chem Mater ; 29(24): 10551-10560, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30270984

RESUMO

Colloidal 2D semiconductor nanosheets (NSs) are an interesting new class of materials due to their unique properties. However, synthesis of these NSs is challenging, and synthesis procedures for materials other than the well-known Pb- and Cd-chalcogenides are still underdeveloped. In this paper, we present a new approach to make copper indium sulfide (CIS) NSs and study their structural and optical properties. The CIS NSs form via self-organization and oriented attachment of 2.5 nm chalcopyrite CuInS2 nanocrystals (NCs), yielding triangular- and hexagonal-shaped NSs with a thickness of ∼3 nm and lateral dimensions ranging from 20 to 1000 nm. The self-organization is induced by fast cation extraction, leading to attractive dipolar interactions between the NCs. Primary amines play a crucial role in the formation of the CIS NSs, both by forming in situ the cation extracting agent, and by preventing the attachment of NCs to the top and bottom facets of the NSs. Moreover, DFT calculations reveal that the amines are essential to stabilize the covellite crystal structure of the product CIS NSs. The NSs are indium-deficient and the off-stoichiometry gives rise to a plasmon resonance in the NIR spectral window.

13.
J Phys Chem Lett ; 7(17): 3503-9, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27552674

RESUMO

Luminescent copper indium sulfide (CIS) nanocrystals are a potential solution to the toxicity issues associated with Cd- and Pb-based nanocrystals. However, the development of high-quality CIS nanocrystals has been complicated by insufficient knowledge of the electronic structure and of the factors that lead to luminescence quenching. Here we investigate the exciton decay pathways in CIS nanocrystals using time-resolved photoluminescence and transient absorption spectroscopy. Core-only CIS nanocrystals with low quantum yield are compared to core/shell nanocrystals (CIS/ZnS and CIS/CdS) with higher quantum yield. Our measurements support the model of photoluminescence by radiative recombination of a conduction band electron with a localized hole. Moreover, we find that photoluminescence quenching in low-quantum-yield nanocrystals involves initially uncoupled decay pathways for the electron and hole. The electron decay pathway determines whether the exciton recombines radiatively or nonradiatively. The development of high-quality CIS nanocrystals should therefore focus on the elimination of electron traps.

14.
Sci Rep ; 6: 21187, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892489

RESUMO

Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters, do not blink, and have photoluminescence lifetimes of a few nanoseconds. Photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.

15.
Chemphyschem ; 17(5): 559-81, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26684665

RESUMO

Over the past few years, colloidal copper chalcogenide nanocrystals (NCs) have emerged as promising alternatives to conventional Cd and Pb chalcogenide NCs. Owing to their wide size, shape, and composition tunability, Cu chalcogenide NCs hold great promise for several applications, such as photovoltaics, lighting and displays, and biomedical imaging. They also offer characteristics that are unparalleled by Cd and Pb chalcogenide NCs, such as plasmonic properties. Moreover, colloidal Cu chalcogenide NCs have low toxicity, potentially lower costs, and excellent colloidal stability. This makes them attractive materials for the large-scale deployment of inexpensive, sustainable, and environmentally benign solution-processed devices. Nevertheless, the synthesis of colloidal Cu chalcogenide NCs, especially that of ternary and quaternary compositions, has yet to reach the same level of mastery as that available for the prototypical Cd chalcogenide based NCs. This review provides a concise overview of this rapidly advancing field, sketching the state of the art and highlighting the key challenges. We discuss recent developments in the synthesis of size-, shape-, and composition-controlled NCs of Cu chalcogenides, with emphasis in strategies to circumvent the limitations arising from the need to precisely balance the reactivities of multiple precursors in synthesizing ternary and quaternary compositions. In this respect, we show that topotactic cation-exchange reactions are a promising alternative route to complex multinary Cu chalcogenide NCs and hetero-NCs, which are not attainable by conventional routes. The properties and potential applications of Cu chalcogenide NCs and hetero-NCs are also addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA