Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32719153

RESUMO

Bacterial biofilms are linked with chronic infections and have properties distinct from those of planktonic, single-celled bacteria. The virulence mechanisms associated with Staphylococcus aureus biofilms are becoming better understood. Human neutrophils are critical for the innate immune response to S. aureus infection. Here, we describe two virulence strategies that converge to promote the ability of S. aureus biofilms to evade killing by neutrophils. Specifically, we show that while neutrophils exposed to S. aureus biofilms produce extracellular traps (NETs) and phagocytose bacteria, both mechanisms are inefficient in clearance of the biofilm biomass. This is attributed to the leukocidin LukAB, which promotes S. aureus survival during phagocytosis. We also show that the persistence of biofilm bacteria trapped in NETs is facilitated by S. aureus nuclease (Nuc)-mediated degradation of NET DNA. This study describes key aspects of the interaction between primary human neutrophils and S. aureus biofilms and provides insight into how S. aureus evades the neutrophil response to cause persistent infections.


Assuntos
Proteínas de Bactérias/imunologia , Biofilmes , Evasão da Resposta Imune , Leucocidinas/imunologia , Nuclease do Micrococo/imunologia , Neutrófilos/imunologia , Staphylococcus aureus/patogenicidade , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/microbiologia , Humanos , Leucocidinas/genética , Viabilidade Microbiana , Nuclease do Micrococo/genética , Neutrófilos/microbiologia , Neutrófilos/patologia , Fagocitose , Staphylococcus aureus/imunologia , Virulência
2.
mBio ; 10(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602580

RESUMO

Staphylococcus aureus is a human pathogen responsible for high morbidity and mortality worldwide. Recurrent infections with this bacterium are common, suggesting that S. aureus thwarts the development of sterilizing immunity. S. aureus strains that cause disease in humans produce up to five different bicomponent toxins (leukocidins) that target and lyse neutrophils, innate immune cells that represent the first line of defense against S. aureus infections. However, little is known about the role of leukocidins in blunting adaptive immunity. Here, we explored the effects of leukocidins on human dendritic cells (DCs), antigen-presenting cells required for the development of adaptive immunity. Using an ex vivo infection model of primary human monocyte-derived dendritic cells, we found that S. aureus, including strains from different clonal complexes and drug resistance profiles, effectively kills DCs despite efficient phagocytosis. Although all purified leukocidins could kill DCs, infections with live bacteria revealed that S. aureus targets and kills DCs primarily via the activity of leukocidin LukAB. Moreover, using coculture experiments performed with DCs and autologous CD4+ T lymphocytes, we found that LukAB inhibits DC-mediated activation and proliferation of primary human T cells. Taken together, the data determined in the study reveal a novel immunosuppressive strategy of S. aureus whereby the bacterium blunts the development of adaptive immunity via LukAB-mediated injury of DCs.IMPORTANCE Antigen-presenting cells such as dendritic cells (DCs) fulfill an indispensable role in the development of adaptive immunity by producing proinflammatory cytokines and presenting microbial antigens to lymphocytes to trigger a faster, specific, and long-lasting immune response. Here, we studied the effect of Staphylococcus aureus toxins on human DCs. We discovered that the leukocidin LukAB hinders the development of adaptive immunity by targeting human DCs. The ability of S. aureus to blunt the function of DCs could help explain the high frequency of recurrent S. aureus infections. Taken together, the results from this study suggest that therapeutically targeting the S. aureus leukocidins may boost effective innate and adaptive immune responses by protecting innate leukocytes, enabling proper antigen presentation and T cell activation.


Assuntos
Proteínas de Bactérias/toxicidade , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/fisiologia , Evasão da Resposta Imune , Leucocidinas/toxicidade , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/microbiologia , Humanos , Ativação Linfocitária , Modelos Biológicos
3.
Front Immunol ; 9: 1691, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083158

RESUMO

Complement is essential for the protection against infections; however, dysregulation of complement activation can cause onset and progression of numerous inflammatory diseases. Convertase enzymes play a central role in complement activation and produce the key mediators of complement: C3 convertases cleave C3 to generate chemoattractant C3a and label target cells with C3b, which promotes phagocytosis; C5 convertases cleave C5 into chemoattractant C5a, and C5b, which drives formation of the membrane attack complex. Since convertases mediate nearly all complement effector functions, they are ideal targets for therapeutic complement inhibition. A unique feature of convertases is their covalent attachment to target cells, which effectively confines complement activation to the cell surface. However, surface localization precludes detailed analysis of convertase activation and inhibition. In our previous work, we developed a model system to form purified alternative pathway (AP) C5 convertases on C3b-coated beads and quantify C5 conversion via functional analysis of released C5a. Here, we developed a C3aR cell reporter system that enables functional discrimination between C3 and C5 convertases. By regulating the C3b density on the bead surface, we observe that high C3b densities are important for conversion of C5, but not C3, by AP convertases. Screening of well-characterized complement-binding molecules revealed that differential inhibition of AP C3 convertases (C3bBb) and C5 convertases [C3bBb(C3b)n] is possible. Although both convertases contain C3b, the C3b-binding molecules Efb-C/Ecb and FHR5 specifically inhibit C5 conversion. Furthermore, using a new classical pathway convertase model, we show that these C3b-binding proteins not only block AP C3/C5 convertases but also inhibit formation of a functional classical pathway C5 convertase under well-defined conditions. Our models enable functional characterization of purified convertase enzymes and provide a platform for the identification and development of specific convertase inhibitors for treatment of complement-mediated disorders.

4.
Proc Natl Acad Sci U S A ; 115(28): 7416-7421, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941565

RESUMO

Bacterial biofilms efficiently evade immune defenses, greatly complicating the prognosis of chronic infections. How methicillin-resistant Staphylococcus aureus (MRSA) biofilms evade host immune defenses is largely unknown. This study describes some of the major mechanisms required for S. aureus biofilms to evade the innate immune response and provides evidence of key virulence factors required for survival and persistence of bacteria during chronic infections. Neutrophils are the most abundant white blood cells in circulation, playing crucial roles in the control and elimination of bacterial pathogens. Specifically, here we show that, unlike single-celled populations, S. aureus biofilms rapidly skew neutrophils toward neutrophil extracellular trap (NET) formation through the combined activity of leukocidins Panton-Valentine leukocidin and γ-hemolysin AB. By eliciting this response, S. aureus was able to persist, as the antimicrobial activity of released NETs was ineffective at clearing biofilm bacteria. Indeed, these studies suggest that NETs could inadvertently potentiate biofilm infections. Last, chronic infection in a porcine burn wound model clearly demonstrated that leukocidins are required for "NETosis" and facilitate bacterial survival in vivo.


Assuntos
Proteínas de Bactérias/imunologia , Biofilmes , Armadilhas Extracelulares/imunologia , Evasão da Resposta Imune , Leucocidinas/imunologia , Neutrófilos/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Infecção dos Ferimentos/imunologia , Animais , Armadilhas Extracelulares/microbiologia , Humanos , Infecções Cutâneas Estafilocócicas/patologia , Suínos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia
5.
Cell Host Microbe ; 22(4): 531-542.e8, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28943329

RESUMO

Diet, and specifically dietary metals, can modify the risk of infection. However, the mechanisms by which manganese (Mn), a common dietary supplement, alters infection remain unexplored. We report that dietary Mn levels dictate the outcome of systemic infections caused by Staphylococcus aureus, a leading cause of bacterial endocarditis. Mice fed a high Mn diet display alterations in Mn levels and localization within infected tissues, and S. aureus virulence and infection of the heart are enhanced. Although the canonical mammalian Mn-sequestering protein calprotectin surrounds staphylococcal heart abscesses, calprotectin is not released into the abscess nidus and does not limit Mn in this organ. Consequently, excess Mn is bioavailable to S. aureus in the heart. Bioavailable Mn is utilized by S. aureus to detoxify reactive oxygen species and protect against neutrophil killing, enhancing fitness within the heart. Therefore, a single dietary modification overwhelms vital host antimicrobial strategies, leading to fatal staphylococcal infection.


Assuntos
Endocardite Bacteriana/microbiologia , Coração/microbiologia , Manganês/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Abscesso , Animais , Dieta , Modelos Animais de Doenças , Coração/fisiopatologia , Humanos , Complexo Antígeno L1 Leucocitário/metabolismo , Fígado/microbiologia , Fígado/fisiopatologia , Manganês/análise , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/patogenicidade
6.
BMC Biol ; 13: 93, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26552476

RESUMO

BACKGROUND: Complement is a large protein network in plasma that is crucial for human immune defenses and a major cause of aberrant inflammatory reactions. The C5 convertase is a multi-molecular protease complex that catalyses the cleavage of native C5 into its biologically important products. So far, it has been difficult to study the exact molecular arrangement of C5 convertases, because their non-catalytic subunits (C3b) are covalently linked to biological surfaces through a reactive thioester. Through development of a highly purified model system for C5 convertases, we here aim to provide insights into the surface-specific nature of these important protease complexes. RESULTS: Alternative pathway (AP) C5 convertases were generated on small streptavidin beads that were coated with purified C3b molecules. Site-specific biotinylation of C3b via the thioester allowed binding of C3b in the natural orientation on the surface. In the presence of factor B and factor D, these C3b beads could effectively convert C5. Conversion rates of surface-bound C3b were more than 100-fold higher than fluid-phase C3b, confirming the requirement of a surface. We determine that high surface densities of C3b, and its attachment via the thioester, are essential for C5 convertase formation. Combining our results with molecular modeling explains how high C3b densities may facilitate intermolecular interactions that only occur on target surfaces. Finally, we define two interfaces on C5 important for its recognition by surface-bound C5 convertases. CONCLUSIONS: We establish a highly purified model that mimics the natural arrangement of C5 convertases on a surface. The developed model and molecular insights are essential to understand the molecular basis of deregulated complement activity in human disease and will facilitate future design of therapeutic interventions against these critical enzymes in inflammation.


Assuntos
Complemento C3b/metabolismo , C5 Convertase da Via Alternativa do Complemento/química , Catálise , C5 Convertase da Via Alternativa do Complemento/metabolismo , Humanos , Cinética , Microesferas , Modelos Químicos , Estreptavidina/química
7.
Mol Immunol ; 65(2): 328-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725315

RESUMO

Direct killing of Gram-negative bacteria by serum is usually attributed to the Membrane Attack Complex (MAC) that is assembled upon activation of the complement system. In serum bactericidal assays, the activity of the MAC is usually blocked by a relatively unspecific method in which certain heat-labile complement components are inactivated at 56°C. The goal of this study was to re-evaluate MAC-driven lysis towards various Gram-negative bacteria. Instead of using heat-treatment, we included the highly specific C5 cleavage inhibitor OmCI to specifically block the formation of the MAC. Using a C5 conversion analysis tool, we monitored the efficacy of the inhibitor during the incubations. Our findings indicate that 'serum-sensitive' bacteria are not necessarily killed by the MAC. Other heat-labile serum factors can contribute to serum bactericidal activity. These unidentified factors are most potent at serum concentrations of 10% and higher. Furthermore, we also find that some bacteria can be killed by the MAC at a slower rate. Our data demonstrate the requirement for the use of specific inhibitors in serum bactericidal assays and revealed that the classification of serum-sensitive and resistant strains needs re-evaluation. Moreover, it is important to determine bacterial viability at multiple time intervals to differentiate serum susceptibility between bacterial species. In conclusion, these data provide new insights into bacterial killing by the humoral immune system and may guide future vaccine development studies for the treatment of pathogenic serum-resistant bacteria.


Assuntos
Atividade Bactericida do Sangue/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Bactérias Gram-Negativas/imunologia , Proteínas de Artrópodes/farmacologia , Proteínas de Transporte/farmacologia , Complemento C5/antagonistas & inibidores , Complemento C5/imunologia , Humanos , Especificidade da Espécie
8.
Biochem J ; 464(1): 3-11, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25181554

RESUMO

NETs (neutrophil extracellular traps) have been described as a fundamental innate immune defence mechanism. During formation of NETs, the nuclear membrane is disrupted by an as-yet unknown mechanism. In the present study we investigated the role of human cathelicidin LL-37 in nuclear membrane disruption and formation of NETs. Immunofluorescence microscopy revealed that 5 µM LL-37 significantly facilitated NET formation by primary human blood-derived neutrophils alone, in the presence of the classical chemical NET inducer PMA or in the presence of Staphylococcus aureus. Parallel assays with a random LL-37 fragment library indicated that the NET induction is mediated by the hydrophobic character of the peptide. The trans-localization of LL-37 towards the nucleus and the disruption of the nuclear membrane were visualized using confocal fluorescence microscopy. In conclusion, the present study demonstrates a novel role for LL-37 in the formation of NETs.


Assuntos
Catelicidinas/farmacologia , Armadilhas Extracelulares/fisiologia , Neutrófilos/fisiologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos , Catelicidinas/genética , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/ultraestrutura
9.
FEMS Microbiol Rev ; 38(6): 1146-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25065463

RESUMO

The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos , Coagulação Sanguínea/imunologia , Proteínas do Sistema Complemento/imunologia , Estresse Fisiológico , Bactérias/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Interações Hospedeiro-Patógeno/imunologia
10.
J Innate Immun ; 6(6): 860-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25012862

RESUMO

Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to S. aureus nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.


Assuntos
Proteínas de Bactérias/imunologia , Catelicidinas/imunologia , Armadilhas Extracelulares/imunologia , Nuclease do Micrococo/imunologia , Neutrófilos/imunologia , Staphylococcus aureus/imunologia , Peptídeos Catiônicos Antimicrobianos , Proteínas de Bactérias/metabolismo , Catelicidinas/metabolismo , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/microbiologia , Feminino , Humanos , Masculino , Nuclease do Micrococo/metabolismo , Neutrófilos/metabolismo , Staphylococcus aureus/enzimologia
11.
Cell Host Microbe ; 15(6): 729-740, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24922575

RESUMO

Group A Streptococcus (GAS) is a leading cause of infection-related mortality in humans. All GAS serotypes express the Lancefield group A carbohydrate (GAC), comprising a polyrhamnose backbone with an immunodominant N-acetylglucosamine (GlcNAc) side chain, which is the basis of rapid diagnostic tests. No biological function has been attributed to this conserved antigen. Here we identify and characterize the GAC biosynthesis genes, gacA through gacL. An isogenic mutant of the glycosyltransferase gacI, which is defective for GlcNAc side-chain addition, is attenuated for virulence in two infection models, in association with increased sensitivity to neutrophil killing, platelet-derived antimicrobials in serum, and the cathelicidin antimicrobial peptide LL-37. Antibodies to GAC lacking the GlcNAc side chain and containing only polyrhamnose promoted opsonophagocytic killing of multiple GAS serotypes and protected against systemic GAS challenge after passive immunization. Thus, the Lancefield antigen plays a functional role in GAS pathogenesis, and a deeper understanding of this unique polysaccharide has implications for vaccine development.


Assuntos
Infecções Estreptocócicas/virologia , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Streptococcus pyogenes/patogenicidade , Acetilglucosamina/imunologia , Acetilglucosamina/metabolismo , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Peptídeos Catiônicos Antimicrobianos , Proteínas de Bactérias/genética , Carboidratos/imunologia , Catelicidinas/farmacologia , Epitopos , Feminino , Glicosiltransferases/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Masculino , Camundongos Endogâmicos , Mutagênese , Neutrófilos/microbiologia , Coelhos , Infecções Estreptocócicas/imunologia , Vacinas Estreptocócicas/genética , Streptococcus pyogenes/efeitos dos fármacos , Fatores de Virulência/genética
12.
Cell Microbiol ; 15(12): 1955-68, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23869880

RESUMO

The plasma proteins of the complement system fulfil important immune defence functions, including opsonization of bacteria for phagocytosis, generation of chemo-attractants and direct bacterial killing via the Membrane Attack Complex (MAC or C5b-9). The MAC is comprised of C5b, C6, C7, C8, and multiple copies of C9 that generate lytic pores in cellular membranes. Gram-positive bacteria are protected from MAC-dependent lysis by their thick peptidoglycan layer. Paradoxically, several Gram-positive pathogens secrete small proteins that inhibit C5b-9 formation. In this study, we found that complement activation on Gram-positive bacteria in serum results in specific surface deposition of C5b-9 complexes. Immunoblotting revealed that C9 occurs in both monomeric and polymeric (SDS-stable) forms, indicating the presence of ring-structured C5b-9. Surprisingly, confocal microscopy demonstrated that C5b-9 deposition occurs at specialized regions on the bacterial cell. On Streptococcus pyogenes, C5b-9 deposits near the division septum whereas on Bacillus subtilis the complex is located at the poles. This is in contrast to C3b deposition, which occurs randomly on the bacterial surface. Altogether, these results show a previously unrecognized interaction between the C5b-9 complex and Gram-positive bacteria, which might ultimately lead to a new model of MAC assembly and functioning.


Assuntos
Parede Celular/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Bactérias Gram-Positivas/imunologia , Sítios de Ligação , Complemento C3b/imunologia , Humanos , Peptidoglicano/imunologia , Ligação Proteica/imunologia
13.
J Innate Immun ; 2(6): 576-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20829609

RESUMO

Neutrophils are key effectors of the host innate immune response against bacterial infection. Staphylococcus aureus is a preeminent human pathogen, with an ability to produce systemic infections even in previously healthy individuals, thereby reflecting a resistance to effective neutrophil clearance. The recent discovery of neutrophil extracellular traps (NETs) has opened a novel dimension in our understanding of how these specialized leukocytes kill pathogens. NETs consist of a nuclear DNA backbone associated with antimicrobial peptides, histones and proteases that provide a matrix to entrap and kill various microbes. Here, we used targeted mutagenesis to examine a potential role of S. aureus nuclease in NET degradation and virulence in a murine respiratory tract infection model. In vitro assays using fluorescence microscopy showed the isogenic nuclease-deficient (nuc-deficient) mutant to be significantly impaired in its ability to degrade NETs compared with the wild-type parent strain USA 300 LAC. Consequently, the nuc-deficient mutant strain was significantly more susceptible to extracellular killing by activated neutrophils. Moreover, S. aureus nuclease production was associated with delayed bacterial clearance in the lung and increased mortality after intranasal infection. In conclusion, this study shows that S. aureus nuclease promotes resistance against NET-mediated antimicrobial activity of neutrophils and contributes to disease pathogenesis in vivo.


Assuntos
Staphylococcus aureus Resistente à Meticilina/fisiologia , Nuclease do Micrococo/metabolismo , Neutrófilos/metabolismo , Infecções Respiratórias/imunologia , Infecções Estafilocócicas/imunologia , Animais , Carga Bacteriana/genética , Bacteriólise/genética , Bacteriólise/imunologia , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/microbiologia , Células Cultivadas , Espaço Extracelular/imunologia , Espaço Extracelular/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Evasão da Resposta Imune/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos , Nuclease do Micrococo/genética , Mutagênese Sítio-Dirigida , Neutrófilos/imunologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/fisiopatologia , Deleção de Sequência/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA