Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 141949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636918

RESUMO

The disintegration of raw sludge is of importance for enhancing biogas production and facilitates the degradation of substrates for microorganisms so that the efficiency of digestion can be increased. In this study, the effect of hydrodynamic cavitation (HC) as a pretreatment approach for waste activated sludge (WAS) was investigated at two upstream pressures (0.83 and 1.72 MPa) by using a milli-scale apparatus which makes sludge pass through an orifice with a restriction at the cross section of the flow. The HC probe made of polyether ether ketone (PEEK) material was tested using potassium iodide solution and it was made sure that cavitation occurred at the selected pressures. The analysis on chemical effects of HC bubbles collapse suggested that not only cavitation occurred at low upstream pressure, i.e., 0.83 MPa, but it also had high intensity at this pressure. The pretreatment results of HC implementation on WAS were also in agreement with the chemical characterization of HC collapse. Release of soluble organics and ammonium was observed in the treated samples, which proved the efficiency of the HC pretreatment. The methane production was improved during the digestion of the treated samples compared to the control one. The digestion of treated WAS sample at lower upstream pressure (0.83 MPa) resulted in higher methane production (128.4 mL CH4/g VS) compared to the treated sample at higher upstream pressure (119.1 mL CH4/g VS) and control sample (98.3 mL CH4/g VS). Thus, these results showed that the HC pretreatment for WAS led to a significant increase in methane production (up to 30.6%), which reveals the potential of HC in full-scale applications.


Assuntos
Hidrodinâmica , Metano , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Metano/metabolismo , Biocombustíveis/análise , Reatores Biológicos
2.
Environ Sci Pollut Res Int ; 31(20): 29304-29320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570432

RESUMO

Recently, one of the main purposes of wastewater treatment plants is to achieve a neutral or positive energy balance while meeting the discharge criteria. Aerobic granular sludge (AGS) technology is a promising technology that has low energy and footprint requirements as well as high treatment performance. The effect of co-treatment of municipal wastewater and food waste (FW) on the treatment performance, granule morphology, and settling behavior of the granules was investigated in the study. A biochemical methane potential (BMP) test was also performed to assess the methane potential of mono- and co-digestion of the excess sludge from the AGS process. The addition of FW into wastewater enhanced the nutrient treatment efficiency in the AGS process. BMP of the excess sludge from the AGS process fed with the mixture of wastewater and FW (195 ± 17 mL CH4/g VS) was slightly higher than BMP of excess sludge from the AGS process fed with solely wastewater (173 ± 16 mL CH4/g VS). The highest methane yield was observed for co-digestion of excess sludge from the AGS process and FW, which was 312 ± 8 mL CH4/g VS. Integration of FW as a co-substrate in the AGS process would potentially enhance energy recovery and the quality of effluent in municipal wastewater treatment.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Esgotos/química , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Metano , Alimentos , Reatores Biológicos , Perda e Desperdício de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA