Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696761

RESUMO

SUMMARY: PlasCAT (Plasmid Cloud Assembly Tool) is an easy-to-use cloud-based bioinformatics tool that enables de novo plasmid sequence assembly from raw sequencing data. Nontechnical users can now assemble sequences from long reads and short reads without ever touching a line of code. PlasCAT uses high-performance computing servers to reduce run times on assemblies and deliver results faster. AVAILABILITY AND IMPLEMENTATION: PlasCAT is freely available on the web at https://sequencing.genofab.com. The assembly pipeline source code and server code are available for download at https://bitbucket.org/genofabinc/workspace/projects/PLASCAT. Click the Cancel button to access the source code without authenticating. Web servers implemented in React.js and Python, with all major browsers supported.


Assuntos
Plasmídeos , Software , Plasmídeos/genética , Computação em Nuvem , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Internet
2.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585828

RESUMO

Despite the wide use of plasmids in research and clinical production, the verification of plasmid sequences is a bottleneck that is too often overlooked in the manufacturing process. Although sequencing platforms continue to improve, the method and assembly pipeline chosen still influence the final plasmid assembly sequence. Furthermore, few dedicated tools exist for plasmid assembly, especially for de novo assembly. Here, we evaluated short-read, long-read, and hybrid (both short and long reads) de novo assembly pipelines across three replicates of a 24-plasmid library. Consistent with previous characterizations of each sequencing technology, short-read assemblies had frequent issues resolving GC-rich regions, and long-read assemblies commonly had small insertions and deletions, especially in repetitive regions. The hybrid approach facilitated the most consistent assembly generation. Although Sanger sequencing can be used to verify specific regions, it requires a reference sequence to design primers, emphasizing the need for accurate de novo plasmid assembly tools. Some GC-rich and repetitive regions were difficult to resolve using any methods, suggesting that easily sequenced genetic parts should be prioritized in the design of new genetic constructs.

3.
Trends Biotechnol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38418329

RESUMO

In a bioeconomy that relies on synthetic DNA sequences, the ability to ensure their authenticity is critical. DNA watermarks can encode identifying data in short sequences and can be combined with error correction and encryption protocols to ensure that sequences are robust to errors and securely communicated. New digital signature techniques allow for public verification that a sequence has not been modified and can contain sufficient information for synthetic DNA to be self-documenting. In translating these techniques from bacteria to more complex genetically modified organisms (GMOs), special considerations must be made to allow for public verification of these products. We argue that these approaches should be widely implemented to assert authorship, increase the traceability, and detect the unauthorized use of synthetic DNA.

4.
PLoS Comput Biol ; 20(2): e1011373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324583

RESUMO

We present the first complete stochastic model of vesicular stomatitis virus (VSV) intracellular replication. Previous models developed to capture VSV's intracellular replication have either been ODE-based or have not represented the complete replicative cycle, limiting our ability to understand the impact of the stochastic nature of early cellular infections on virion production between cells and how these dynamics change in response to mutations. Our model accurately predicts changes in mean virion production in gene-shuffled VSV variants and can capture the distribution of the number of viruses produced. This model has allowed us to enhance our understanding of intercellular variability in virion production, which appears to be influenced by the duration of the early phase of infection, and variation between variants, arising from balancing the time the genome spends in the active state, the speed of incorporating new genomes into virions, and the production of viral components. Being a stochastic model, we can also assess other effects of mutations beyond just the mean number of virions produced, including the probability of aborted infections and the standard deviation of the number of virions produced. Our model provides a biologically interpretable framework for studying the stochastic nature of VSV replication, shedding light on the mechanisms underlying variation in virion production. In the future, this model could enable the design of more complex viral phenotypes when attenuating VSV, moving beyond solely considering the mean number of virions produced.


Assuntos
Estomatite Vesicular , Animais , Estomatite Vesicular/genética , Vírus da Estomatite Vesicular Indiana/genética , Vírion/genética , Replicação Viral/genética , Mutação
5.
PLoS Comput Biol ; 19(12): e1011652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060459

RESUMO

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

6.
Front Pharmacol ; 14: 1206104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388441

RESUMO

Opioids are effective analgesics for treating moderate to severe pain, however, their use must be weighed against their dangerous side effects. Investigations into opioid pharmacokinetics provide crucial information regarding both on- and off-target drug effects. Our recent work showed that morphine deposits and accumulates in the mouse retina at higher concentrations than in the brain upon chronic systemic exposure. We also found reduced retinal expression of P-glycoprotein (P-gp), a major opioid extruder at the blood-brain barrier (BBB). Here, we systematically interrogated the expression of three putative opioid transporters at the blood-retina barrier (BRB): P-gp, breast cancer resistance protein (Bcrp) and multidrug resistance protein 2 (Mrp2). Using immunohistochemistry, we found robust expression of P-gp and Bcrp, but not Mrp2, at the inner BRB of the mouse retina. Previous studies have suggested that P-gp expression may be regulated by sex hormones. However, upon acute morphine treatment we found no sex differences in morphine deposition levels in the retina or brain, nor on transporter expression in the retinas of males and females with a high or low estrogen:progesterone ratio. Importantly, we found that P-gp, but not Bcrp, expression significantly correlated with morphine concentration in the retina, suggesting P-gp is the predominant opioid transporter at the BRB. In addition, fluorescence extravasation studies revealed that chronic morphine treatment did not alter the permeability of either the BBB or BRB. Together, these data suggest that reduced P-gp expression mediates retinal morphine accumulation upon systemic delivery, and in turn, potential effects on circadian photoentrainment.

8.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168350

RESUMO

Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive non-image forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although µ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine (via the D1R) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both non-image forming as well as image forming visual functions.

9.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555511

RESUMO

Opioid drugs are the most effective tools for treating moderate to severe pain. Despite their analgesic efficacy, long-term opioid use can lead to drug tolerance, addiction, and sleep/wake disturbances. While the link between opioids and sleep/wake problems is well-documented, the mechanism underlying opioid-related sleep/wake problems remains largely unresolved. Importantly, intrinsically photosensitive retinal ganglion cells (ipRGCs), the cells that transmit environmental light/dark information to the brain's sleep/circadian centers to regulate sleep/wake behavior, express µ-opioid receptors (MORs). In this study, we explored the potential contribution of ipRGCs to opioid-related sleep/circadian disruptions. Using implanted telemetry transmitters, we measured changes in horizontal locomotor activity and body temperature in mice over the course of a chronic morphine paradigm. Mice lacking MORs expressed by ipRGCs (McKO) exhibited reduced morphine-induced behavioral activation/sensitization compared with control littermates with normal patterns of MOR expression. Contrastingly, mice lacking MORs globally (MKO) did not acquire morphine-induced locomotor activation/sensitization. Control mice also showed morphine-induced hypothermia in both the light and dark phases, while McKO littermates only exhibited morphine-induced hypothermia in the dark. Interestingly, only control animals appeared to acquire tolerance to morphine's hypothermic effect. Morphine, however, did not acutely decrease the body temperature of MKO mice. These findings support the idea that MORs expressed by ipRGCs could contribute to opioid-related sleep/wake problems and thermoregulatory changes.


Assuntos
Dermatite Fototóxica , Morfina , Camundongos , Animais , Morfina/farmacologia , Morfina/metabolismo , Analgésicos Opioides/metabolismo , Receptores Opioides/metabolismo , Células Ganglionares da Retina/metabolismo , Dor/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Dermatite Fototóxica/metabolismo
10.
Front Neurosci ; 16: 981939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992901

RESUMO

Chronic opioid use is linked to persistent and severe sleep/wake disturbances in patients. These opioid-related sleep problems increase risk for developing opioid dependence, mood disorders and in turn overdose in chronic pain patients receiving opioid therapy. Despite the well-established link between long-term opioid use and sleep disorders, the mechanism by which opioids perturb sleep remains unclear. Interestingly, animal studies indicate that opioids disrupt sleep/wake behaviors by altering an animal's ability to synchronize their circadian rhythms to environmental light cycles (i.e., photoentrainment). A specific subset of retinal cells known as intrinsically photosensitive retinal ganglion cells (ipRGCs) that express µ-opioid receptors are exclusively responsible for transmitting environmental light information to sleep/circadian centers in the brain. Thus, this review will focus on the effect of opioids on ipRGCs and their projection regions that are involved in the photoentrainment of sleep/wake behaviors. Lastly, we discuss the viability of ipRGCs as a potential therapeutic target for treating opioid-related sleep/wake problems.

11.
Neurobiol Sleep Circadian Rhythms ; 13: 100078, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35800978

RESUMO

Circadian sleep/wake rhythms are synchronized to environmental light/dark cycles in a process known as photoentrainment. We have previously shown that activation of ß-endorphin-preferring µ-opioid receptors (MORs) inhibits the light-evoked firing of intrinsically photosensitive retinal ganglion cells (ipRGCs), the sole conduits of photoentrainment. Although we have shown that ß-endorphin is expressed in the adult mouse retina, the conditions under which ß-endorphin is expressed are unknown. Moreover, it is unclear whether endogenous activation of the MORs expressed by ipRGCs modulates the photoentrainment of sleep/wake cycles. To elucidate this, we first measured the mRNA expression of ß-endorphin's precursor, proopiomelanocortin (POMC), at various times of day by quantitative reverse-transcription PCR. POMC mRNA appears to have cyclic expression in the mouse retina. We then studied ß-endorphin expression with immunohistochemistry and found that retinal ß-endorphin is more highly expressed in the dark/at night. Finally, we used telemetry to measure activity, EEG and EMG in freely moving animals to compare sleep/wake cycles in wild-type and transgenic mice in which only ipRGCs lack functional MORs. Results from these experiments suggest that the MORs expressed by ipRGCs contribute to the induction and maintenance of activity in the dark phase in nocturnal mice, via the promotion of wakefulness and inhibition of slow-wave sleep. Together, these data suggest that endogenous ß-endorphin activates MORs expressed by ipRGCs to modulate sleep/wake activity via the photoentrainment pathway.

12.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35631353

RESUMO

Opioid transport into the central nervous system is crucial for the analgesic efficacy of opioid drugs. Thus, the pharmacokinetics of opioid analgesics such as morphine have been extensively studied in systemic circulation and the brain. While opioid metabolites are routinely detected in the vitreous fluid of the eye during postmortem toxicological analyses, the pharmacokinetics of morphine within the retina of the eye remains largely unexplored. In this study, we measured morphine in mouse retina following systemic exposure. We showed that morphine deposits and persists in the retina long after levels have dropped in the serum. Moreover, we found that morphine concentrations (ng/mg tissue) in the retina exceeded brain morphine concentrations at all time points tested. Perhaps most intriguingly, these data indicate that following chronic systemic exposure, morphine accumulates in the retina, but not in the brain or serum. These results suggest that morphine can accumulate in the retina following chronic use, which could contribute to the deleterious effects of chronic opioid use on both image-forming and non-image-forming visual functions.

13.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429857

RESUMO

Opioid peptides and their receptors are expressed in the mammalian retina; however, little is known about how they might affect visual processing. The melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), which mediate important non-image-forming visual processes such as the pupillary light reflex (PLR), express ß-endorphin-preferring, µ-opioid receptors (MORs). The objective of the present study was to elucidate if opioids, endogenous or exogenous, modulate pupillary light reflex (PLR) via MORs expressed by ipRGCs. MOR-selective agonist [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAMGO) or antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) was administered via intravitreal injection. PLR was recorded in response to light stimuli of various intensities. DAMGO eliminated PLR evoked by light with intensities below melanopsin activation threshold but not that evoked by bright blue irradiance that activated melanopsin signaling, although in the latter case, DAMGO markedly slowed pupil constriction. CTAP or genetic ablation of MORs in ipRGCs slightly enhanced dim-light-evoked PLR but not that evoked by a bright blue stimulus. Our results suggest that endogenous opioid signaling in the retina contributes to the regulation of PLR. The slowing of bright light-evoked PLR by DAMGO is consistent with the observation that systemically applied opioids accumulate in the vitreous and that patients receiving chronic opioid treatment have slow PLR.


Assuntos
Peptídeos Opioides/genética , Receptores Opioides mu/genética , Retina/metabolismo , Percepção Visual/genética , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Encefalinas/antagonistas & inibidores , Encefalinas/genética , Humanos , Luz , Camundongos , Peptídeos/farmacologia , Receptores Opioides/genética , Receptores Opioides mu/antagonistas & inibidores , Reflexo/genética , Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos , beta-Endorfina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA