RESUMO
Following myocardial infarction, reperfusion injury (RI) is commonly observed due to the excessive formation of, e.g., reactive oxygen species (ROS). Doxorubicin (DOX), a widely used anti-cancer drug, is also known to cause cardiotoxicity due to excessive ROS production. Exercise training has been shown to protect the heart against both RI- and DOX-induced cardiotoxicity, but the exact mechanism is still unknown. Neuron-derived orphan receptor 1 (NOR-1) is an important exercise-responsive protein in the skeletal muscle which has also been reported to facilitate cellular survival during hypoxia. Therefore, we hypothesized that NOR-1 could protect cardiomyocytes (CMs) against cellular stress induced by DOX. We also hypothesized that NOR-1 is involved in preparing the CMs against a stress situation during nonstimulated conditions by increasing cell viability. To determine the protective effect of NOR-1 in CMs stressed with DOX challenge, we overexpressed NOR-1 in AC16 human CMs treated with 5 µM DOX for 12 h or the respective vehicle control, followed by performing Lactate dehydrogenase (LDH) activity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and caspase-3 activity assays to measure cell death, cell viability, and apoptosis, respectively. In addition, Western blotting analysis was performed to determine the expression of key proteins involved in cardioprotection. We demonstrated that NOR-1 overexpression decreased cell death (p < 0.105) and apoptosis (p < 0.01) while increasing cell viability (p < 0.05) in DOX-treated CMs. We also observed that NOR-1 overexpression increased phosphorylation of extracellular signal-regulated kinase (ERK) (p < 0.01) and protein expression levels of B cell lymphoma extra-large (Bcl-xL) (p < 0.01). We did not detect any significant changes in phosphorylation of protein kinase B (Akt), glycogen synthase kinase-3ß (GSK-3ß) and signal transducer and activator of transcription 3 (STAT3) or expression levels of superoxide dismutase 2 (SOD2) and cyclin D1. Furthermore, we demonstrated that NOR-1 overexpression increased the cell viability (p < 0.0001) of CMs during nonstimulated conditions without affecting cell death or apoptosis. Our findings indicate that NOR-1 could serve as a potential cardioprotective protein in response to Doxorubicin-induced cellular stress.