Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Semin Radiat Oncol ; 34(3): 262-271, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880534

RESUMO

Radiotherapy elicits dose- and lineage-dependent effects on immune cell survival, migration, activation, and proliferation in targeted tumor microenvironments. Radiation also stimulates phenotypic changes that modulate the immune susceptibility of tumor cells. This has raised interest in using radiotherapy to promote greater response to immunotherapies. To clarify the potential of such combinations, it is critical to understand how best to administer radiation therapy to achieve activation of desired immunologic mechanisms. In considering the multifaceted process of priming and propagating anti-tumor immune response, radiation dose heterogeneity emerges as a potential means for simultaneously engaging diverse dose-dependent effects in a single tumor environment. Recent work in spatially fractionated external beam radiation therapy demonstrates the expansive immune responses achievable when a range of high to low dose radiation is delivered in a tumor. Brachytherapy and radiopharmaceutical therapies deliver inherently heterogeneous distributions of radiation that may contribute to immunogenicity. This review evaluates the interplay of radiation dose and anti-tumor immune response and explores emerging methodological approaches for investigating the effects of heterogeneous dose distribution on immune responses.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação , Neoplasias/radioterapia , Neoplasias/imunologia , Dosagem Radioterapêutica , Imunoterapia/métodos , Relação Dose-Resposta à Radiação , Animais
2.
Commun Biol ; 7(1): 314, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480799

RESUMO

Histopathologic diagnosis and classification of cancer plays a critical role in guiding treatment. Advances in next-generation sequencing have ushered in new complementary molecular frameworks. However, existing approaches do not independently assess both site-of-origin (e.g. prostate) and lineage (e.g. adenocarcinoma) and have minimal validation in metastatic disease, where classification is more difficult. Utilizing gradient-boosted machine learning, we developed ATLAS, a pair of separate AI Tumor Lineage and Site-of-origin models from RNA expression data on 8249 tumor samples. We assessed performance independently in 10,376 total tumor samples, including 1490 metastatic samples, achieving an accuracy of 91.4% for cancer site-of-origin and 97.1% for cancer lineage. High confidence predictions (encompassing the majority of cases) were accurate 98-99% of the time in both localized and remarkably even in metastatic samples. We also identified emergent properties of our lineage scores for tumor types on which the model was never trained (zero-shot learning). Adenocarcinoma/sarcoma lineage scores differentiated epithelioid from biphasic/sarcomatoid mesothelioma. Also, predicted lineage de-differentiation identified neuroendocrine/small cell tumors and was associated with poor outcomes across tumor types. Our platform-independent single-sample approach can be easily translated to existing RNA-seq platforms. ATLAS can complement and guide traditional histopathologic assessment in challenging situations and tumors of unknown primary.


Assuntos
Adenocarcinoma , Mesotelioma Maligno , Tumores Neuroendócrinos , Masculino , Humanos , Aprendizado de Máquina , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética
3.
Cell Rep ; 42(12): 113556, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096050

RESUMO

We report an in situ vaccination, adaptable to nearly any type of cancer, that combines radiotherapy targeting one tumor and intratumoral injection of this site with tumor-specific antibody and interleukin-2 (IL-2; 3xTx). In a phase I clinical trial, administration of 3xTx (with an immunocytokine fusion of tumor-specific antibody and IL-2, hu14.18-IL2) to subjects with metastatic melanoma increases peripheral CD8+ T cell effector polyfunctionality. This suggests the potential for 3xTx to promote antitumor immunity against metastatic tumors. In poorly immunogenic syngeneic murine melanoma or head and neck carcinoma models, 3xTx stimulates CD8+ T cell-mediated antitumor responses at targeted and non-targeted tumors. During 3xTx treatment, natural killer (NK) cells promote CTLA4+ regulatory T cell (Treg) apoptosis in non-targeted tumors. This is dependent on NK cell expression of CD86, which is upregulated downstream of KLRK1. NK cell depletion increases Treg infiltration, diminishing CD8+ T cell-dependent antitumor response. These findings demonstrate that NK cells sustain and propagate CD8+ T cell immunity following 3xTx.


Assuntos
Interleucina-2 , Melanoma , Camundongos , Humanos , Animais , Interleucina-2/metabolismo , Melanoma/metabolismo , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Vacinação
4.
Semin Cancer Biol ; 86(Pt 3): 846-856, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143991

RESUMO

Cancer cells reside amongst a complex milieu of stromal cells and structural features known as the tumor microenvironment. Often cancer cells divert and co-opt functions of stromal cells of the microenvironment to support tumor progression and treatment resistance. During therapy targeting cancer cells, the stromal cells of the microenvironment receive therapy to the same extent as cancer cells. Stromal cells therefore activate a variety of responses to the damage induced by these therapies, and some of those responses may support tumor progression and resistance. We review here the response of stromal cells to cancer therapy with a focus on radiotherapy in glioblastoma. We highlight the response of endothelial cells and the vasculature, macrophages and microglia, and astrocytes, as well as describing resulting changes in the extracellular matrix. We emphasize the complex interplay of these cellular factors in their dynamic responses. Finally, we discuss their resulting support of cancer cells in tumor progression and therapy resistance. Understanding the stromal cell response to therapy provides insight into complementary therapeutic targets to enhance tumor response to existing treatment options.


Assuntos
Glioblastoma , Microambiente Tumoral , Humanos , Células Endoteliais , Células Estromais , Matriz Extracelular
5.
Cells ; 10(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802060

RESUMO

Glioblastoma is characterized by extensive necrotic areas with surrounding hypoxia. The cancer cell response to hypoxia in these areas is well-described; it involves a metabolic shift and an increase in stem cell-like characteristics. Less is known about the hypoxic response of tumor-associated astrocytes, a major component of the glioma tumor microenvironment. Here, we used primary human astrocytes and a genetically engineered glioma mouse model to investigate the response of this stromal cell type to hypoxia. We found that astrocytes became reactive in response to intermediate and severe hypoxia, similarly to irradiated and temozolomide-treated astrocytes. Hypoxic astrocytes displayed a potent hypoxia response that appeared to be driven primarily by hypoxia-inducible factor 2-alpha (HIF-2α). This response involved the activation of classical HIF target genes and the increased production of hypoxia-associated cytokines such as TGF-ß1, IL-3, angiogenin, VEGF-A, and IL-1 alpha. In vivo, astrocytes were present in proximity to perinecrotic areas surrounding HIF-2α expressing cells, suggesting that hypoxic astrocytes contribute to the glioma microenvironment. Extracellular matrix derived from hypoxic astrocytes increased the proliferation and drug efflux capability of glioma cells. Together, our findings suggest that hypoxic astrocytes are implicated in tumor growth and potentially stemness maintenance by remodeling the tumor microenvironment.


Assuntos
Astrócitos/metabolismo , Glioma/fisiopatologia , Animais , Hipóxia Celular , Humanos , Camundongos , Microambiente Tumoral
6.
Cancer Res ; 81(8): 2101-2115, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483373

RESUMO

The tumor microenvironment plays an essential role in supporting glioma stemness and radioresistance. Following radiotherapy, recurrent gliomas form in an irradiated microenvironment. Here we report that astrocytes, when pre-irradiated, increase stemness and survival of cocultured glioma cells. Tumor-naïve brains increased reactive astrocytes in response to radiation, and mice subjected to radiation prior to implantation of glioma cells developed more aggressive tumors. Extracellular matrix derived from irradiated astrocytes were found to be a major driver of this phenotype and astrocyte-derived transglutaminase 2 (TGM2) was identified as a promoter of glioma stemness and radioresistance. TGM2 levels increased after radiation in vivo and in recurrent human glioma, and TGM2 inhibitors abrogated glioma stemness and survival. These data suggest that irradiation of the brain results in the formation of a tumor-supportive microenvironment. Therapeutic targeting of radiation-induced, astrocyte-derived extracellular matrix proteins may enhance the efficacy of standard-of-care radiotherapy by reducing stemness in glioma. SIGNIFICANCE: These findings presented here indicate that radiotherapy can result in a tumor-supportive microenvironment, the targeting of which may be necessary to overcome tumor cell therapeutic resistance and recurrence. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2101/F1.large.jpg.


Assuntos
Astrócitos/enzimologia , Neoplasias Encefálicas/radioterapia , Encéfalo/efeitos da radiação , Proteínas de Ligação ao GTP/metabolismo , Glioblastoma/radioterapia , Células-Tronco Neoplásicas , Transglutaminases/metabolismo , Microambiente Tumoral/efeitos da radiação , Animais , Astrócitos/efeitos da radiação , Encéfalo/citologia , Encéfalo/fisiologia , Neoplasias Encefálicas/patologia , Sobrevivência Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Feminino , Proteínas de Ligação ao GTP/antagonistas & inibidores , Glioblastoma/patologia , Glioma/patologia , Glioma/radioterapia , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia/enzimologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/fisiologia , Proteína 2 Glutamina gama-Glutamiltransferase , Tolerância a Radiação , Transglutaminases/antagonistas & inibidores , Microambiente Tumoral/fisiologia
7.
Neoplasia ; 22(12): 689-701, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142235

RESUMO

Tumor cell behaviors associated with aggressive tumor growth such as proliferation, therapeutic resistance, and stem cell characteristics are regulated in part by soluble factors derived from the tumor microenvironment. Tumor-associated astrocytes represent a major component of the glioma tumor microenvironment, and astrocytes have an active role in maintenance of normal neural stem cells in the stem cell niche, in part via secretion of soluble delta-like noncanonical Notch ligand 1 (DLK1). We found that astrocytes, when exposed to stresses of the tumor microenvironment such as hypoxia or ionizing radiation, increased secretion of soluble DLK1. Tumor-associated astrocytes in a glioma mouse model expressed DLK1 in perinecrotic and perivascular tumor areas. Glioma cells exposed to recombinant DLK1 displayed increased proliferation, enhanced self-renewal and colony formation abilities, and increased levels of stem cell marker genes. Mechanistically, DLK1-mediated effects on glioma cells involved increased and prolonged stabilization of hypoxia-inducible factor 2alpha, and inhibition of hypoxia-inducible factor 2alpha activity abolished effects of DLK1 in hypoxia. Forced expression of soluble DLK1 resulted in more aggressive tumor growth and shortened survival in a genetically engineered mouse model of glioma. Together, our data support DLK1 as a soluble mediator of glioma aggressiveness derived from the tumor microenvironment.


Assuntos
Biomarcadores Tumorais , Proteínas de Ligação ao Cálcio/metabolismo , Glioma/metabolismo , Microambiente Tumoral , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Hipóxia , Camundongos , Camundongos Knockout , Carga Tumoral
8.
Cell Rep ; 20(7): 1641-1653, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813675

RESUMO

Hypoxia-inducible factors enhance glioma stemness, and glioma stem cells have an amplified hypoxic response despite residing within a perivascular niche. Still, little is known about differential HIF regulation in stem versus bulk glioma cells. We show that the intracellular domain of stem cell marker CD44 (CD44ICD) is released at hypoxia, binds HIF-2α (but not HIF-1α), enhances HIF target gene activation, and is required for hypoxia-induced stemness in glioma. In a glioma mouse model, CD44 was restricted to hypoxic and perivascular tumor regions, and in human glioma, a hypoxia signature correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo-hypoxic phenotype of stem-like glioma cells is achieved by stabilization of HIF-2α through interaction with CD44, independently of oxygen.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Receptores de Hialuronatos/metabolismo , Hipóxia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Glioma/genética , Glioma/patologia , Humanos , Receptores de Hialuronatos/antagonistas & inibidores , Receptores de Hialuronatos/genética , Hipóxia/genética , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Ligação Proteica , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Nicho de Células-Tronco/genética
9.
Nat Med ; 22(11): 1294-1302, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27748747

RESUMO

The efficacy of angiogenesis inhibitors in cancer is limited by resistance mechanisms that are poorly understood. Notably, instead of through the induction of angiogenesis, tumor vascularization can occur through the nonangiogenic mechanism of vessel co-option. Here we show that vessel co-option is associated with a poor response to the anti-angiogenic agent bevacizumab in patients with colorectal cancer liver metastases. Moreover, we find that vessel co-option is also prevalent in human breast cancer liver metastases, a setting in which results with anti-angiogenic therapy have been disappointing. In preclinical mechanistic studies, we found that cancer cell motility mediated by the actin-related protein 2/3 complex (Arp2/3) is required for vessel co-option in liver metastases in vivo and that, in this setting, combined inhibition of angiogenesis and vessel co-option is more effective than the inhibition of angiogenesis alone. Vessel co-option is therefore a clinically relevant mechanism of resistance to anti-angiogenic therapy and combined inhibition of angiogenesis and vessel co-option might be a warranted therapeutic strategy.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Carcinoma/irrigação sanguínea , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Carcinoma/tratamento farmacológico , Carcinoma/secundário , Carcinoma Ductal de Mama/secundário , Carcinoma Lobular/secundário , Movimento Celular/genética , Neoplasias Colorretais/patologia , Feminino , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Gradação de Tumores
10.
Curr Biol ; 26(6): 755-65, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26948875

RESUMO

Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis.


Assuntos
Colágeno Tipo II/metabolismo , Fibroblastos/metabolismo , Neovascularização Patológica/genética , RNA de Transferência de Metionina/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Colágeno Tipo II/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neovascularização Patológica/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , RNA de Transferência de Metionina/metabolismo , Células Estromais/patologia
11.
Cancer Biol Ther ; 13(8): 647-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22549160

RESUMO

The small GTPase Rac1 regulates many cellular processes, including cytoskeletal reorganization, cell migration, proliferation, and survival. Additionally, Rac1 plays a major role in activating NF-κB-mediated transcription. Both Rac1 and NF-κB regulate many properties of the malignant phenotype, including anchorage-independent proliferation and survival, metastasis, and angiogenesis. Despite these findings, the roles of Rac1and NF-κB in non-small cell lung carcinoma, a leading cause of cancer deaths, have not been thoroughly investigated. Here, we compared the effects of Rac1 siRNA to that of the Rac1 inhibitor NSC23766 on multiple features of the NSCLC malignant phenotype, including NF-κB activity. We show that the siRNA-mediated silencing of Rac1 in lung cancer cells results in decreased cell proliferation and migration. The decrease in proliferation was observed in both anchorage-dependent and anchorage-independent assays. Furthermore, cells with decreased Rac1 expression have a slowed progression through the G 1 phase of the cell cycle. These effects induced by Rac1 siRNA correlated with a decrease in NF-κB transcriptional activity. Additionally, inhibition of NF-κB signaling with BAY 11-7082 inhibited proliferation; indicating that the loss of cell proliferation and migration induced by the silencing of Rac1 expression may be attributed in part to loss of NF-κB activity. Interestingly, treatment with the Rac1 inhibitor NSC23766 strongly inhibits cell proliferation, cell cycle progression, and NF-κB activity in lung cancer cells, to an even greater extent than the inhibition induced by Rac1 siRNA. These findings indicate that Rac1 plays an important role in lung cancer cell proliferation and migration, most likely through its ability to promote NF-κB activity, and highlight Rac1 pathways as therapeutic targets for the treatment of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Aminoquinolinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Inativação Gênica , Humanos , Neoplasias Pulmonares/genética , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Pirimidinas/farmacologia , Sulfonas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética
12.
Mol Cell ; 45(4): 541-52, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22281053

RESUMO

Polo-like kinase Plk1 controls numerous aspects of cell-cycle progression. We show that it associates with tRNA and 5S rRNA genes and regulates their transcription by RNA polymerase III (pol III) through direct binding and phosphorylation of transcription factor Brf1. During interphase, Plk1 promotes tRNA and 5S rRNA expression by phosphorylating Brf1 directly on serine 450. However, this stimulatory modification is overridden at mitosis, when elevated Plk1 activity causes Brf1 phosphorylation on threonine 270 (T270), which prevents pol III recruitment. Thus, although Plk1 enhances net tRNA and 5S rRNA production, consistent with its proliferation-stimulating function, it also suppresses untimely transcription when cells divide. Genomic instability is apparent in cells with Brf1 T270 mutated to alanine to resist Plk1-directed inactivation, suggesting that chromosome segregation is vulnerable to inappropriate pol III activity.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , RNA Ribossômico 5S/genética , RNA de Transferência/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/genética , Instabilidade Genômica , Células HeLa , Humanos , Mitose , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Polimerase III/metabolismo , RNA Polimerase III/fisiologia , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIIIB/metabolismo , Quinase 1 Polo-Like
13.
J Biol Chem ; 285(46): 35255-66, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20709748

RESUMO

Ras and Rho small GTPases possessing a C-terminal polybasic region (PBR) are vital signaling proteins whose misregulation can lead to cancer. Signaling by these proteins depends on their ability to bind guanine nucleotides and their prenylation with a geranylgeranyl or farnesyl isoprenoid moiety and subsequent trafficking to cellular membranes. There is little previous evidence that cellular signals can restrain nonprenylated GTPases from entering the prenylation pathway, leading to the general belief that PBR-possessing GTPases are prenylated as soon as they are synthesized. Here, we present evidence that challenges this belief. We demonstrate that insertion of the dominant negative mutation to inhibit GDP/GTP exchange diminishes prenylation of Rap1A and RhoA, enhances prenylation of Rac1, and does not detectably alter prenylation of K-Ras. Our results indicate that the entrance and passage of these small GTPases through the prenylation pathway is regulated by two splice variants of SmgGDS, a protein that has been reported to promote GDP/GTP exchange by PBR-possessing GTPases and to be up-regulated in several forms of cancer. We show that the previously characterized 558-residue SmgGDS splice variant (SmgGDS-558) selectively associates with prenylated small GTPases and facilitates trafficking of Rap1A to the plasma membrane, whereas the less well characterized 607-residue SmgGDS splice variant (SmgGDS-607) associates with nonprenylated GTPases and regulates the entry of Rap1A, RhoA, and Rac1 into the prenylation pathway. These results indicate that guanine nucleotide exchange and interactions with SmgGDS splice variants can regulate the entrance and passage of PBR-possessing small GTPases through the prenylation pathway.


Assuntos
Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Prenilação de Proteína , Processamento Alternativo , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
14.
J Biol Chem ; 283(2): 963-76, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17951244

RESUMO

Non-small cell lung carcinoma (NSCLC) is promoted by the increased activities of several small GTPases, including K-Ras4B, Rap1A, Rap1B, RhoC, and Rac1. SmgGDS is an unusual guanine nucleotide exchange factor that activates many of these small GTPases, and thus may promote NSCLC development or progression. We report here that SmgGDS protein levels are elevated in NSCLC tumors, compared with normal lung tissue from the same patients or from individuals without cancer. To characterize SmgGDS functions in NSCLC, we tested the effects of silencing SmgGDS expression by transfecting cultured NSCLC cells with SmgGDS small interfering RNA (siRNA). Cells with silenced SmgGDS expression form fewer colonies in soft agar, do not proliferate in culture due to an arrest in G(1) phase, and exhibit disrupted myosin organization and reduced cell migration. The transcriptional activity of NF-kappaB in NSCLC cells is diminished by transfecting the cells with SmgGDS siRNA, and enhanced by transfecting the cells with a cDNA encoding SmgGDS. Because RhoA is a major substrate for SmgGDS, we investigated whether diminished RhoA expression mimics the effects of diminished SmgGDS expression. Silencing RhoA expression with RhoA siRNA disrupts myosin organization, but only moderately decreases cell proliferation and does not inhibit migration. Our finding that the aggressive NSCLC phenotype is more effectively suppressed by silencing SmgGDS than by silencing RhoA is consistent with the ability of SmgGDS to regulate multiple small GTPases in addition to RhoA. These results demonstrate that SmgGDS promotes the malignant NSCLC phenotype and is an intriguing therapeutic target in NSCLC.


Assuntos
Divisão Celular/fisiologia , Movimento Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , NF-kappa B/genética , RNA Interferente Pequeno/genética , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Neoplasias Pulmonares , RNA Neoplásico/genética , Transcrição Gênica , Transfecção , Proteína rhoA de Ligação ao GTP/genética
15.
Water Environ Res ; 78(12): 2297-302, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17243228

RESUMO

The presence of infectious protozoan pathogens in reclaimed water may present an unacceptable health risk. This study was designed similar to a study reported by Garcia et al. (2002), which detected no infectious Giardia cysts in the final effluent of a tertiary treatment facility as determined by animal infectivity (dose 1000 cysts/gerbil). This study also included evaluation of Cryptosporidium oocyst infectivity. Infectious Giardia cysts were detected in the final effluent with 1 gerbil out of 3 inoculated with 250 cysts from reclaimed water showing signs of infection 15 days postinoculation. None of the Cryptosporidium oocysts concentrated from the reclaimed water samples appeared to be infectious.


Assuntos
Cryptosporidium/isolamento & purificação , Giardia/isolamento & purificação , Eliminação de Resíduos Líquidos , Animais , Cryptosporidium/patogenicidade , Gerbillinae , Giardia/patogenicidade , Oocistos , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA