Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(39): 24487-24494, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193701

RESUMO

In this paper, we address the unique nature of fully textured, high surface-to-volume 3C-SiC films, as produced by intrinsic growth anisotropy, in turn generated by the high velocity of the stacking fault growth front in two-dimensional (111) platelets. Structural interpretation of high resolution scanning electron microscopy and transmission electron microscopy data is carried out for samples grown in a hot-wall low-pressure chemical vapour deposition reactor with trichlorosilane and ethylene precursors, under suitable deposition conditions. By correlating the morphology and the X-ray diffraction analysis we also point out that twinning along (111) planes is very frequent in such materials, which changes the free-platelet configuration.

2.
Phys Rev Lett ; 109(15): 156101, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102337

RESUMO

We show that on suitably pit-patterned Si(001), deposition of just a few atomic layers of Ge can trigger a far larger flow of Si into the pits. This surprising effect results in anomalous smoothing of the substrate preceding island formation in the pits. We show that the effect naturally arises in continuum simulations of growth, and we identify its physical origin in the composition dependence of the surface diffusivity. Our interpretation suggests that anomalous smoothing is likely to also occur in other technologically relevant heteroepitaxial systems.

3.
Nanotechnology ; 22(28): 285704, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21646691

RESUMO

The evolution of the wetting layer (WL) thickness during Ge deposition on Si(001) is analyzed with the help of a rate-equation approach. The combined role of thickness, island volume and shape-dependent chemical potentials is considered. Several experimental observations, such as WL thinning following the pyramid-to-dome transformation, are captured by the model, as directly demonstrated by a close comparison with photoluminescence measurements (PL) on samples grown at three different temperatures. The limitations of the model in describing late stages of growth are critically addressed.

4.
Nanoscale Res Lett ; 5(12): 1873-7, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-21170413

RESUMO

We investigate ordered nucleation of Ge islands on pit-patterned Si(001) using an original hybrid Kinetic Monte Carlo model. The method allows us to explore long time-scale evolution while using large simulation cells. We analyze the possibility to achieve selective nucleation and island homogeneity as a function of the various parameters (flux, temperature, pit period) able to influence the growth process. The presence of an optimal condition where the atomic diffusivity is sufficient to guarantee nucleation only within pits, but not so large to induce significant Ostwald ripening, is clearly demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA