Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3062, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244935

RESUMO

Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Histonas/genética , Histonas/metabolismo , Glioblastoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Cromatina/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
2.
NAR Cancer ; 4(2): zcac012, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35425901

RESUMO

Cranial irradiation is part of the standard of care for treating pediatric brain tumors. However, ionizing radiation can trigger serious long-term neurologic sequelae, including oligodendrocyte and brain white matter loss enabling neurocognitive decline in children surviving brain cancer. Oxidative stress-mediated oligodendrocyte precursor cell (OPC) radiosensitivity has been proposed as a possible explanation for this. Here, however, we demonstrate that antioxidants fail to improve OPC viability after irradiation, despite suppressing oxidative stress, suggesting an alternative etiology for OPC radiosensitivity. Using systematic approaches, we find that OPCs have higher irradiation-induced and endogenous γH2AX foci compared to neural stem cells, neurons, astrocytes and mature oligodendrocytes, and these correlate with replication-associated DNA double strand breakage. Furthermore, OPCs are reliant upon ATR kinase and Mre11 nuclease-dependent processes for viability, are more sensitive to drugs increasing replication fork collapse, and display synthetic lethality with PARP inhibitors after irradiation. This suggests an insufficiency for homology-mediated DNA repair in OPCs-a model that is supported by evidence of normal RPA but reduced RAD51 filament formation at resected lesions in irradiated OPCs. We therefore propose a DNA repair-centric mechanism of OPC radiosensitivity, involving chronically-elevated replication stress combined with 'bottlenecks' in RAD51-dependent DNA repair that together reduce radiation resilience.

3.
Nucleic Acids Res ; 48(19): e111, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33010172

RESUMO

Ionizing radiation (IR) is environmentally prevalent and, depending on dose and linear energy transfer (LET), can elicit serious health effects by damaging DNA. Relative to low LET photon radiation (X-rays, gamma rays), higher LET particle radiation produces more disease causing, complex DNA damage that is substantially more challenging to resolve quickly or accurately. Despite the majority of human lifetime IR exposure involving long-term, repetitive, low doses of high LET alpha particles (e.g. radon gas inhalation), technological limitations to deliver alpha particles in the laboratory conveniently, repeatedly, over a prolonged period, in low doses and in an affordable, high-throughput manner have constrained DNA damage and repair research on this topic. To resolve this, we developed an inexpensive, high capacity, 96-well plate-compatible alpha particle irradiator capable of delivering adjustable, low mGy/s particle radiation doses in multiple model systems and on the benchtop of a standard laboratory. The system enables monitoring alpha particle effects on DNA damage repair and signalling, genome stability pathways, oxidative stress, cell cycle phase distribution, cell viability and clonogenic survival using numerous microscopy-based and physical techniques. Most importantly, this method is foundational for high-throughput genetic screening and small molecule testing in mammalian and yeast cells.


Assuntos
Partículas alfa/efeitos adversos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Radiogenética/instrumentação , Células A549 , Ciclo Celular/efeitos da radiação , Células HeLa , Humanos , Estresse Oxidativo/efeitos da radiação , Saccharomyces cerevisiae , Transdução de Sinais/efeitos da radiação
4.
Nat Commun ; 10(1): 241, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651562

RESUMO

Cell survival after oxidative DNA damage requires signaling, repair and transcriptional events often enabled by nucleosome displacement, exchange or removal by chromatin remodeling enzymes. Here, we show that Chromodomain Helicase DNA-binding protein 6 (CHD6), distinct to other CHD enzymes, is stabilized during oxidative stress via reduced degradation. CHD6 relocates rapidly to DNA damage in a manner dependent upon oxidative lesions and a conserved N-terminal poly(ADP-ribose)-dependent recruitment motif, with later retention requiring the double chromodomain and central core. CHD6 ablation increases reactive oxygen species persistence and impairs anti-oxidant transcriptional responses, leading to elevated DNA breakage and poly(ADP-ribose) induction that cannot be rescued by catalytic or double chromodomain mutants. Despite no overt epigenetic or DNA repair abnormalities, CHD6 loss leads to impaired cell survival after chronic oxidative stress, abnormal chromatin relaxation, amplified DNA damage signaling and checkpoint hypersensitivity. We suggest that CHD6 is a key regulator of the oxidative DNA damage response.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Dano ao DNA/fisiologia , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/fisiologia , Células A549 , Sobrevivência Celular/fisiologia , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Células HEK293 , Humanos , Microscopia Intravital , Lasers/efeitos adversos , Proteínas do Tecido Nervoso/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Philos Trans R Soc Lond B Biol Sci ; 372(1731)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28847820

RESUMO

Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Epigênese Genética , Estresse Oxidativo , Animais , Humanos , Camundongos , Ratos
6.
Mol Pain ; 11: 12, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25889575

RESUMO

BACKGROUND: Cav3.2 channels facilitate nociceptive transmission and are upregulated in DRG neurons in response to nerve injury or peripheral inflammation. We reported that this enhancement of Cav3.2 currents in afferent neurons is mediated by deubiquitination of the channels by the deubiquitinase USP5, and that disrupting USP5/Cav3.2 channel interactions protected from inflammatory and neuropathic pain. RESULTS: Here we describe the development of a small molecule screening assay for USP5-Cav3.2 disruptors, and report on two hits of a ~5000 compound screen - suramin and the flavonoid gossypetin. In mouse models of inflammatory pain and neuropathic pain, both suramin and gossypetin produced dose-dependent and long-lasting mechanical anti-hyperalgesia that was abolished or greatly attenuated in Cav3.2 null mice. Suramin and Cav3.2/USP5 Tat-disruptor peptides were also tested in models of diabetic neuropathy and visceral pain, and provided remarkable protection. CONCLUSIONS: Overall, our findings provide proof of concept for a new class of analgesics that target T-type channel deubiquitination.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Neuralgia/metabolismo , Neurônios Aferentes/metabolismo , Suramina/farmacologia , Proteases Específicas de Ubiquitina/metabolismo , Analgésicos/farmacologia , Animais , Gânglios Espinais/fisiopatologia , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Neuralgia/fisiopatologia
7.
Pflugers Arch ; 467(6): 1237-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24990197

RESUMO

We have recently identified a class of dihydropyridine (DHP) analogues with 30-fold selectivity for T-type over L-type calcium channels that could be attributed to a modification of a key ester moiety. Based on these results, we examined a second series of compounds with similar attributes to determine if they had enhanced affinity for T-type channels. Whole-cell patch clamp experiments in transfected tsA-201 cells were used to screen these DHP derivatives for high affinity and selectivity for Cav3.2 over Cav1.2 L-type channels. The effects of the two lead compounds, termed N10 and N12, on Cav3.2 channel activity and gating were characterized in detail. When delivered intrathecally or intraperitoneally, these compounds mediated analgesia in a mouse model of acute inflammatory pain. The best compound from the initial screening, N12, was also able to reverse mechanical hyperalgesia produced by nerve injury. The compounds were ineffective in Cav3.2 null mice. Altogether, our data reveal a novel class of T-type channel blocking DHPs for potential pain therapies.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Di-Hidropiridinas/farmacologia , Neuralgia/tratamento farmacológico , Animais , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo T/genética , Linhagem Celular , Di-Hidropiridinas/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Bibliotecas de Moléculas Pequenas/farmacologia
8.
ACS Chem Neurosci ; 6(2): 277-87, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25314588

RESUMO

Low-voltage-activated (T-type) calcium channels are important regulators of the transmission of nociceptive information in the primary afferent pathway and finding ligands that modulate these channels is a key focus of the drug discovery field. Recently, we characterized a set of novel compounds with mixed cannabinoid receptor/T-type channel blocking activity and examined their analgesic effects in animal models of pain. Here, we have built on these previous findings and synthesized a new series of small organic compounds. We then screened them using whole-cell voltage clamp techniques to identify the most potent T-type calcium channel inhibitors. The two most potent blockers (compounds 9 and 10) were then characterized using radioligand binding assays to determine their affinity for CB1 and CB2 receptors. The structure-activity relationship and optimization studies have led to the discovery of a new T-type calcium channel blocker, compound 9. Compound 9 was efficacious in mediating analgesia in mouse models of acute inflammatory pain and in reducing tactile allodynia in the partial nerve ligation model. This compound was shown to be ineffective in Cav3.2 T-type calcium channel null mice at therapeutically relevant concentrations, and it caused no significant motor deficits in open field tests. Taken together, our data reveal a novel class of compounds whose physiological and therapeutic actions are mediated through block of Cav3.2 calcium channels.


Assuntos
Analgésicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Analgésicos/química , Animais , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Antagonistas de Receptores de Canabinoides/química , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Dor/tratamento farmacológico , Dor/fisiopatologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Nervo Isquiático/lesões , Tato
9.
Mol Pain ; 10: 77, 2014 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-25481027

RESUMO

BACKGROUND: T-type calcium channels and cannabinoid receptors are known to play important roles in chronic pain, making them attractive therapeutic targets. We recently reported on the design, synthesis and analgesic properties of a novel T-type channel inhibitor (NMP-7), which also shows mixed agonist activity on CB1 and CB2 receptors in vitro. Here, we analyzed the analgesic effect of systemically delivered NMP-7 (intraperitoneal (i.p.) or intragstric (i.g.) routes) on mechanical hypersensitivity in inflammatory pain induced by Complete Freund's Adjuvant (CFA) and neuropathic pain induced by sciatic nerve injury. RESULTS: NMP-7 delivered by either i.p. or i.g. routes produced dose-dependent inhibition of mechanical hyperalgesia in mouse models of inflammatory and neuropathic pain, without altering spontaneous locomotor activity in the open-field test at the highest active dose. Neither i.p. nor i.g. treatment reduced peripheral inflammation per se, as evaluated by examining paw edema and myeloperoxidase activity. The antinociception produced by NMP-7 in the CFA test was completely abolished in CaV3.2-null mice, confirming CaV3.2 as a key target. The analgesic action of intraperitoneally delivered NMP-7 was not affected by pretreatment of mice with the CB1 antagonist AM281, but was significantly attenuated by pretreatment with the CB2 antagonist AM630, suggesting that CB2 receptors, but not CB1 receptors are involved in the action of NMP-7 in vivo. CONCLUSIONS: Overall, our work shows that NMP-7 mediates a significant analgesic effect in a model of persistent inflammatory and chronic neuropathic pain by way of T-type channel modulation and CB2 receptor activation. Thus, this study provides a novel therapeutic avenue for managing chronic pain conditions via mixed CB ligands/T-type channel blockers.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Carbazóis/química , Inflamação/metabolismo , Neuralgia/tratamento farmacológico , Receptor CB2 de Canabinoide/metabolismo , Analgesia/métodos , Analgésicos/química , Animais , Peso Corporal , Carbazóis/farmacologia , Adjuvante de Freund/metabolismo , Hiperalgesia , Inflamação/tratamento farmacológico , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/metabolismo , Dor/tratamento farmacológico , Medição da Dor , Nervo Isquiático/lesões
10.
Mol Pain ; 9: 32, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23815854

RESUMO

BACKGROUND: Cannabinoid receptors and T-type calcium channels are potential targets for treating pain. Here we report on the design, synthesis and analgesic properties of a new mixed cannabinoid/T-type channel ligand, NMP-181. RESULTS: NMP-181 action on CB1 and CB2 receptors was characterized in radioligand binding and in vitro GTPγ[35S] functional assays, and block of transiently expressed human Cav3.2 T-type channels by NMP-181 was analyzed by patch clamp. The analgesic effects and in vivo mechanism of action of NMP-181 delivered spinally or systemically were analyzed in formalin and CFA mouse models of pain. NMP-181 inhibited peak CaV3.2 currents with IC50 values in the low micromolar range and acted as a CB2 agonist. Inactivated state dependence further augmented the inhibitory action of NMP-181. NMP-181 produced a dose-dependent antinociceptive effect when administered either spinally or systemically in both phases of the formalin test. Both i.t. and i.p. treatment of mice with NMP-181 reversed the mechanical hyperalgesia induced by CFA injection. NMP-181 showed no antinocieptive effect in CaV3.2 null mice. The antinociceptive effect of intrathecally delivered NMP-181 in the formalin test was reversed by i.t. treatment of mice with AM-630 (CB2 antagonist). In contrast, the NMP-181-induced antinociception was not affected by treatment of mice with AM-281 (CB1 antagonist). CONCLUSIONS: Our work shows that both T-type channels as well as CB2 receptors play a role in the antinociceptive action of NMP-181, and also provides a novel avenue for suppressing chronic pain through novel mixed T-type/cannabinoid receptor ligands.


Assuntos
Analgésicos/farmacologia , Canais de Cálcio Tipo T/metabolismo , Carbazóis/farmacologia , Receptor CB2 de Canabinoide/agonistas , Analgésicos/química , Animais , Células CHO , Canais de Cálcio Tipo T/genética , Carbazóis/química , Cricetulus , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Morfolinas , Medição da Dor , Pirazóis , Receptor CB2 de Canabinoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA