Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822663

RESUMO

Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.


Assuntos
Sequestro de Carbono , Mudança Climática , Variação Genética , Picea , Árvores , Picea/genética , Picea/crescimento & desenvolvimento , Árvores/genética , Árvores/crescimento & desenvolvimento , Filogeografia
2.
Sci Rep ; 13(1): 14506, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666929

RESUMO

Climate change poses a serious risk to sustainable forest management, particularly in boreal forests where natural disturbances have been projected to become more severe. In three Quebec boreal forest management units, biomass carbon storage under various climate change and management scenarios was projected over 300 years (2010-2310) with a process-based dynamic landscape model (PnET-succession for Landis-II). Several strategies varying in their use of partial cuts and clear cuts, including business as usual (BAU) (clear-cut applied on more than 95% of the managed area), were tested and compared to conservation scenarios (no-harvest). Based on simulation results at the landscape scale, the clearcut-based scenarios such as BAU could result in a decrease of biomass carbon stock by 10 tC ha-1 yr-1 compared to the natural scenario. However, this reduction in carbon stock could be offset in the long term through changes in composition, as clearcut systems promote the expansion of trembling aspen and white birch. In contrast, the use of strategies based on partial cuts on more than 75% or 50% of the managed area was closer to or better than the natural scenario and resulted in greater coniferous cover retention. These strategies seemed to be the best to maximize and stabilize biomass carbon storage and ensure wood supply under different climate change scenarios, yet they would require further access and appropriate infrastructure. Furthermore, these strategies could maintain species compositions and age structures similar to natural scenarios, and thus may consequently help achieve forest ecosystem-based management targets. This study presents promising strategies to guide sustainable forest management in Eastern Canada in the context of climate change.


Assuntos
Mudança Climática , Ecossistema , Canadá , Florestas , Carbono
3.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743552

RESUMO

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Assuntos
Embolia , Água Subterrânea , Água/fisiologia , Madeira/fisiologia , Xilema/fisiologia , Plantas , Folhas de Planta/fisiologia , Secas
4.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386149

RESUMO

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Assuntos
Reprodução , Árvores , Fertilidade , Sementes , Saciação
5.
iScience ; 26(6): 106807, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37255655

RESUMO

Dry and warm conditions have exacerbated the occurrence of large and severe wildfires over the past decade in Canada's Northwest Territories (NT). Although temperatures are expected to increase during the 21st century, we lack understanding of how the climate-vegetation-fire nexus might respond. We used a dynamic global vegetation model to project annual burn rates, as well as tree species composition and biomass in the NT during the 21st century using the IPCC's climate scenarios. Burn rates will decrease in most of the NT by the mid-21st century, concomitant with biomass loss of fire-prone evergreen needleleaf tree species, and biomass increase of broadleaf tree species. The southeastern NT is projected to experience enhanced fire activity by the late 21st century according to scenario RCP4.5, supported by a higher production of flammable evergreen needleleaf biomass. The results underlie the potential for major impacts of climate change on the NT's terrestrial ecosystems.

6.
Ecology ; 104(7): e4098, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37258300

RESUMO

Many studies have focused on vegetation across forest edges to study impacts of edges created by human activities on forest structure and composition, or patterns of vegetation at inherent natural edges. Our objective was to create a database of plant-related variables across different types of edges from various studies (mainly from across Canada, but also in Brazil and Belize) to facilitate edge research. We compiled data on vegetation along more than 300 transects perpendicular to forest edges adjacent to clear-cuts, burned areas, bogs, lakes, barrens, insect disturbances, and riparian areas from 24 studies conducted over the past three decades. Data were compiled for more than 400 plant species and forest structure variables (e.g., trees, logs, canopy cover). All data were collected with a similar sampling design of quadrats along transects perpendicular to forest edges, but with varying numbers of transects and quadrats, and distances from the edge. The purpose for most of the studies was either to determine the distance of edge influence (edge width) or to explore the pattern of vegetation along the edge to interior gradient. We provide data tables for the cover of plant species and functional groups, the species and size of live and dead trees, the density of saplings, maximum height of functional groups and shrub species, and the cover of functional groups at different heights (vertical distribution of vegetation). The Forest Edge Research Network (FERN) database provides extensive data on many variables that can be used for further study including meta-analyses and can assist in answering questions important to conservation efforts (e.g., how is distance of edge influence from created edges affected by different factors?). We plan to expand this database with subsequent studies from the authors and we invite others to contribute to make this a more global database. The data are released under a CC0 license. When using these data, we ask that you cite this data paper and any relevant publications listed in our metadata file. We also encourage you to contact the first author if you are planning to use or contribute to this database.


Assuntos
Florestas , Animais , Humanos , Insetos , Árvores , Áreas Alagadas
7.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36451586

RESUMO

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Assuntos
Traqueófitas , Teorema de Bayes , Florestas , Temperatura Baixa , Temperatura , Mudança Climática , Estações do Ano
8.
Sci Rep ; 12(1): 7220, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508611

RESUMO

Climate change affects timings, frequency, and intensity of frost events in northern ecosystems. However, our understanding of the impacts that frost will have on growth and survival of plants is still limited. When projecting the occurrence of frost, the internal variability and the different underlying physical formulations are two major sources of uncertainty of climate models. We use 50 climate simulations produced by a single-initial large climate ensemble and five climate simulations produced by different pairs of global and regional climate models based on the concentration pathway (RCP 8.5) over a latitudinal transect covering the temperate and boreal ecosystems of western Quebec, Canada, during 1955-2099 to provide a first-order estimate of the relative importance of these two sources of uncertainty on the occurrence of frost, i.e. when air temperature is < 0 °C, and their potential damage to trees. The variation in the date of the last spring frost was larger by 21 days (from 46 to 25 days) for the 50 climate simulations compared to the 5 different pairs of climate models. When considering these two sources of uncertainty in an eco-physiological model simulating the timings of budbreak for trees of northern environment, results show that 20% of climate simulations expect that trees will be exposed to frost even in 2090. Thus, frost damage to trees remains likely under global warming.


Assuntos
Mudança Climática , Árvores , Ecossistema , Quebeque , Estações do Ano , Árvores/fisiologia
9.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501313

RESUMO

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Assuntos
Florestas , Sementes , Fertilidade , Reprodução , Sementes/fisiologia , Árvores
10.
Environ Microbiol ; 24(8): 3517-3528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35416394

RESUMO

The composition of ecologically important moss-associated bacterial communities seems to be mainly driven by host species but may also be shaped by environmental conditions related with tree dominance. The moss phyllosphere has been studied in coniferous forests while broadleaf forests remain understudied. To determine if host species or environmental conditions defined by tree dominance drives the bacterial diversity in the moss phyllosphere, we used 16S rRNA gene amplicon sequencing to quantify changes in bacterial communities as a function of host species (Pleurozium schreberi and Ptilium crista-castrensis) and forest type (coniferous black spruce versus deciduous broadleaf trembling aspen) in eastern Canada. The overall composition of moss phyllosphere was defined by the interaction of both factors, though most of the bacterial phyla were determined by a strong effect of forest type. Bacterial α-diversity was highest in spruce forests, while there was greater turnover (ß-diversity) and higher γ-diversity in aspen forests. Unexpectedly, Cyanobacteria were much more relatively abundant in aspen than in spruce forests, with the cyanobacteria family Nostocaceae differing the most between forest types. Our results advance the understanding of moss-associated microbial communities among coniferous and broadleaf deciduous forests, which are important with the increasing changes in tree dominance in the boreal system.


Assuntos
Briófitas/microbiologia , Cianobactérias/fisiologia , Picea/fisiologia , Traqueófitas/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Bryopsida/microbiologia , Cianobactérias/crescimento & desenvolvimento , Florestas , Picea/crescimento & desenvolvimento , Quebeque , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética
11.
Ecol Evol ; 12(3): e8656, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342593

RESUMO

Increasing air temperatures and changing precipitation patterns due to climate change can affect tree growth in boreal forests. Periodic insect outbreaks affect the growth trajectory of trees, making it difficult to quantify the climate signal in growth dynamics at scales longer than a year. We studied climate-driven growth trends and the influence of spruce budworm (Choristoneura fumiferana Clem.) outbreaks on these trends by analyzing the basal area increment (BAI) of 2058 trees of Abies balsamea (L.) Mill., Picea glauca (Moench) Voss, Thuja occidentalis L., Populus tremuloides Michx., and Betula papyrifera Marsh, which co-occurs in the boreal mixedwood forests of western Quebec. We used a generalized additive mixed model (GAMM) to analyze species-specific trends in BAI dynamics from 1967 to 1991. The model relied on tree size, cambial age, degree of spruce budworm defoliation, and seasonal climatic variables. Overall, we observed a decreasing growth rate of the spruce budworm host species, A. balsamea and P. glauca between 1967 and 1991, and an increasing growth rate for the non-host, P. tremuloides, B. papyrifera, and T. occidentalis. Our results suggest that insect outbreaks may offset growth increases resulting from a warmer climate. The observation warrants the inclusion of the spruce budworm defoliation into models predicting future forest productivity.

12.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34983867

RESUMO

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Assuntos
Mudança Climática , Árvores/fisiologia , Ecossistema , Fertilidade/fisiologia , Geografia , América do Norte , Incerteza
13.
Glob Chang Biol ; 28(5): 1903-1918, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873797

RESUMO

The boreal forest represents the terrestrial biome most heavily affected by climate change. However, no consensus exists regarding the impacts of these changes on the growth of tree species therein. Moreover, assessments of young tree responses in metrics transposable to forest management remain scarce. Here, we assessed the impacts of climate change on black spruce (Picea mariana [Miller] BSP) and jack pine (Pinus banksiana Lambert) growth, two dominant tree species in boreal forests of North America. Starting with a retrospective analysis including data from 2591 black spruces and 890 jack pines, we forecasted trends in 30-year height growth at the transitions from closed to open boreal coniferous forests in Québec, Canada. We considered three variables: (1) height growth, rarely used, but better-reflecting site potential than other growth proxies, (2) climate normals corresponding to the growth period of each stem, and (3) site type (as a function of texture, stoniness, and drainage), which can modify the effects of climate on tree growth. We found a positive effect of vapor pressure deficit on the growth of both species, although the effect on black spruce leveled off. For black spruce, temperatures had a positive effect on the height at 30 years, which was attenuated when and where climatic conditions became drier. Conversely, drought had a positive effect on height under cold conditions and a negative effect under warm conditions. Spruce growth was also better on mesic than on rocky and sub-hydric sites. For portions of the study areas with projected future climate within the calibration range, median height-change varied from 10 to 31% for black spruce and from 5 to 31% for jack pine, depending on the period and climate scenario. As projected increases are relatively small, they may not be sufficient to compensate for potential increases in future disturbances like forest fires.


Assuntos
Picea , Pinus , Mudança Climática , Picea/fisiologia , Pinus/fisiologia , Estudos Retrospectivos , Taiga , Árvores
14.
Front Plant Sci ; 12: 754596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721484

RESUMO

In recent years, the utility of earlywood vessels anatomical characteristics in identifying and reconstructing hydrological conditions has been fully recognized. In riparian ring-porous species, flood rings have been used to identify discrete flood events, and chronologies developed from cross-sectional lumen areas of earlywood vessels have been used to successfully reconstruct seasonal discharge. In contrast, the utility of the earlywood vessel chronologies in non-riparian habitats has been less compelling. No studies have contrasted within species their earlywood vessel anatomical characteristics, specifically from trees that are inversely exposed to flooding. In this study, earlywood vessel and ring-width chronologies were compared between flooded and non-flooded control Fraxinus nigra trees. The association between chronologies and hydroclimate variables was also assessed. Fraxinus nigra trees from both settings shared similar mean tree-ring width but floodplain trees did produce, on average, thicker earlywood. Vessel chronologies from the floodplain trees generally recorded higher mean sensitivity (standard deviation) and lower autocorrelation than corresponding control chronologies indicating higher year-to-year variations. Principal components analysis (PCA) revealed that control and floodplain chronologies shared little variance indicating habitat-specific signals. At the habitat level, the PCA indicated that vessel characteristics were strongly associated with tree-ring width descriptors in control trees whereas, in floodplain trees, they were decoupled from the width. The most striking difference found between flood exposures related to the chronologies' associations with hydroclimatic variables. Floodplain vessel chronologies were strongly associated with climate variables modulating spring-flood conditions as well as with spring discharge whereas control ones showed weaker and few consistent correlations. Our results illustrated how spring flood conditions modulate earlywood vessel plasticity. In floodplain F. nigra trees, the use of earlywood vessel characteristics could potentially be extended to assess and/or mitigate anthropogenic modifications of hydrological regimes. In absence of major recurring environmental stressors like spring flooding, our results support the idea that the production of continuous earlywood vessel chronologies may be of limited utility in dendroclimatology.

15.
Front Plant Sci ; 12: 757280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777435

RESUMO

In northeastern boreal Canada, the long-term perspective on spring flooding is hampered by the absence of long gage records. Changes in the tree-ring anatomy of periodically flooded trees have allowed the reconstruction of historical floods in unregulated hydrological systems. In regulated rivers, the study of flood rings could recover past flood history, assuming that the effects of hydrological regulation on their production can be understood. This study analyzes the effect of regulation on the flood-ring occurrence (visual intensity and relative frequency) and on ring widths in Fraxinus nigra trees growing at five sites distributed along the Driftwood River floodplain. Driftwood River was regulated by a dam in 1917 that was replaced at the same location in 1953. Ring width revealed little, to no evidence, of the impact of river regulation, in contrast to the flood rings. Prior to 1917, high relative frequencies of well-defined flood rings were recorded during known flood years, as indicated by significant correlations with reconstructed spring discharge of the nearby Harricana River. After the construction and the replacement of the dam, relative frequencies of flood rings and their intensities gradually decreased. Flood-ring relative frequencies after 1917, and particularly after 1953, were mostly composed of weakly defined (less distinct) flood rings with some corresponding to known flood years and others likely reflecting dam management. The strength of the correlations with the instrumental Harricana River discharge also gradually decrease starting after 1917. Compared with upper floodplain trees, shoreline trees at each site recorded flood rings less frequently following the construction of the first but especially of the second dam, indicating that water level regulation limited flooding in the floodplains. Compared with the downstream site to the dam, the upstream ones recorded significantly more flood rings in the postdam period, reemphasizing the importance of considering the position of the site along with the river continuum and site conditions in relation to flood exposure. The results demonstrated that sampling trees in multiple riparian stands and along with various hydrological contexts at a far distance of the dams could help disentangle the flooding signal from the dam management signal.

16.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34697246

RESUMO

Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.


Assuntos
Mudança Climática , Picea , Taiga , Incêndios Florestais , América do Norte
17.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400503

RESUMO

Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size-fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.


Assuntos
Fertilidade , Modelos Biológicos , Regeneração , Árvores/crescimento & desenvolvimento , Florestas
18.
Sci Total Environ ; 794: 148514, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218146

RESUMO

An increase in frequency, intensity and duration of drought events affects forested ecosystems. Trees react to these changes by adjusting stomatal conductance to maximize the trade-off between carbon gains and water losses. A better understanding of the consequences of these drought-induced physiological adjustments for tree growth could help inferring future productivity potentials of boreal forests. Here, we used samples from a forest inventory network in Canada where a decline in growth rates of black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) occurred in 1988-1992, an exceptionally dry period, to verify if this growth decline resulted from physiological adjustments of trees to drought. We measured carbon and oxygen isotope ratios in growth rings of 95 spruces and 49 pines spanning 1985-1993. We used 13C discrimination (Δ13C) and 18O enrichment (Δ18O) as proxies for intrinsic water use efficiency and stomatal conductance, respectively. We studied how inter-annual variability in isotopic signals was linked to climate moisture index, vapor pressure deficit and annual snowfall amount. We found significantly lower Δ13C values over 1988-1990, and significantly higher Δ18O values in 1988-1989 and 1991 compared to the 1985-1993 averages. We also observed that a low climatic water balance and a high vapor pressure deficit were linked with low Δ13C and high Δ18O in the two study species, in parallel with low growth rates. The latter effect persisted into the year following drought for black spruce, but not for jack pine. These findings highlight that small differences in physiological parameters between species could translate into large differences in post-drought recovery. The stronger and longer lasting impact on black spruce compared to jack pine suggests a less efficient carbon use and a lower acclimation potential to future warmer and drier climate conditions.


Assuntos
Picea , Pinus , Canadá , Secas , Ecossistema , Árvores
19.
Front Plant Sci ; 12: 658880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995456

RESUMO

We investigated whether stand species mixture can attenuate the vulnerability of eastern Canada's boreal forests to climate change and insect epidemics. For this, we focused on two dominant boreal species, black spruce [Picea mariana (Mill.) BSP] and trembling aspen (Populus tremuloides Michx.), in stands dominated by black spruce or trembling aspen ("pure stands"), and mixed stands (M) composed of both species within a 36 km2 study area in the Nord-du-Québec region. For each species in each stand composition type, we tested climate-growth relations and assessed the impacts on growth by recorded insect epidemics of a black spruce defoliator, the spruce budworm (SBW) [Choristoneura fumiferana (Clem.)], and a trembling aspen defoliator, the forest tent caterpillar (FTC; Malacosoma disstria Hübn.). We implemented linear models in a Bayesian framework to explain baseline and long-term trends in tree growth for each species according to stand composition type and to differentiate the influences of climate and insect epidemics on tree growth. Overall, we found climate vulnerability was lower for black spruce in mixed stands than in pure stands, while trembling aspen was less sensitive to climate than spruce, and aspen did not present differences in responses based on stand mixture. We did not find any reduction of vulnerability for mixed stands to insect epidemics in the host species, but the non-host species in mixed stands could respond positively to epidemics affecting the host species, thus contributing to stabilize ecosystem-scale growth over time. Our findings partially support boreal forest management strategies including stand species mixture to foster forests that are resilient to climate change and insect epidemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA