Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 1: 25, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20975690

RESUMO

Understanding the details of domain wall (DW) motion along magnetic racetracks has drawn considerable interest in the past few years for their applications in non-volatile memory devices. The propagation of the DW is dictated by the interplay between its driving force, either field or current, and the complex energy landscape of the racetrack. In this study, we use spin-valve nanowires to study field-driven DW motion in real time. By varying the strength of the driving magnetic field, the propagation mode of the DW can be changed from a simple translational mode to a more complex precessional mode. Interestingly, the DW motion becomes much more stochastic at the onset of this propagation mode. We show that this unexpected result is a consequence of an unsustainable gain in Zeeman energy of the DW, as it is driven faster by the magnetic field. As a result, the DW periodically releases energy and thereby becomes more susceptible to pinning by local imperfections in the racetrack.


Assuntos
Magnetismo , Nanotecnologia/métodos , Nanofios
2.
Phys Rev Lett ; 93(19): 197403, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600878

RESUMO

It is demonstrated that ultrafast generation of ferromagnetic order can be achieved by driving a material from an antiferromagnetic to a ferromagnetic state using femtosecond optical pulses. Experimental proof is provided for chemically ordered FeRh thin films. A subpicosecond onset of induced ferromagnetism is followed by a slower increase over a period of about 30 ps when FeRh is excited above a threshold fluence. Both experiment and theory provide evidence that the underlying phase transformation is accompanied, but not driven, by a lattice expansion. The mechanism for the observed ultrafast magnetic transformation is identified to be the strong ferromagnetic exchange mediated via Rh moments induced by Fe spin fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA