Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38100268

RESUMO

BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.


Assuntos
Interferon gama , Sepse , Humanos , Interferon gama/metabolismo , Imunoadsorventes/uso terapêutico , Estudos Prospectivos , Biomarcadores
2.
medRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37745385

RESUMO

BACKGROUND: Sepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients has generally relied on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision. METHODS: An ex vivo whole blood enzyme-linked immunosorbent (ELISpot) assay for cellular production of interferon-γ (IFN-γ) was evaluated in 107 septic and 68 non-septic patients from five academic health centers using blood samples collected on days 1, 4 and 7 following ICU admission. RESULTS: Compared with 46 healthy subjects, unstimulated and stimulated whole blood IFNγ expression were either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole blood IFNγ expression was significantly reduced on ICU days 1, 4 and 7 (all p<0.05), due to both significant reductions in total number of IFNγ producing cells and amount of IFNγ produced per cell (all p<0.05). Importantly, IFNγ total expression on day 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6 and procalcitonin. Septic patients with low IFNγ expression were older and had lower ALC and higher sPD-L1 and IL-10 concentrations, consistent with an immune suppressed endotype. CONCLUSIONS: A whole blood IFNγ ELISpot assay can both identify septic patients at increased risk of late mortality, and identify immune-suppressed, sepsis patients.

3.
J Foot Ankle Surg ; 62(4): 661-665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36933979

RESUMO

The purpose of this study was to prospectively enroll patients that presented to the emergency department with a lower extremity infection, stratify risk and record outcomes. Risk stratification was performed based on the Society of Vascular Surgery Wound, foot Infection, and Ischemia (WIfI) classification system. This study aimed to establish the efficacy and validity of this classification in predicting patient outcomes during immediate hospitalization and throughout a 1 year follow up. A total of 152 patients were enrolled in the study and of these, 116 met the inclusion criteria and had at least 1 year of follow up for analysis. Each patient was assigned a WIfI score based on wound, ischemia, and foot infection severity according to the classification guidelines. Patient demographics as well as all podiatric and vascular procedures were recorded. The major end points of the study were rates of proximal amputation, time to wound healing, surgical procedures, surgical dehiscence, readmission rates, and mortality. A difference in rates of healing (p = .04), surgical dehiscence (p < .01), and 1 year mortality (p = .01) with increasing WIfI stage as well as across the individual component scores was noted. This analysis further supports the application of the WIfI classification system early during patient care to stratify risk and identify the need for early intervention and a multispecialty team approach to potentially improve outcomes in the severe multicomorbid patient.


Assuntos
Salvamento de Membro , Doença Arterial Periférica , Humanos , Resultado do Tratamento , Fatores de Risco , Medição de Risco , Salvamento de Membro/métodos , Isquemia/cirurgia , Estudos Retrospectivos , Doença Arterial Periférica/cirurgia
4.
Burns ; 49(4): 877-888, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35850881

RESUMO

Probiotics have become of interest as therapeutics in trauma or sepsis-induced inflammation due to their ability to affects the immune response. However, their use is still under debate due to the potential risk of septicemia. Therefore, heat-killed probiotics offer a potential alternative, with recent research suggesting a comparable immunomodulating potential and increased safety. In a previous study, we demonstrated decreased mortality by administration of live Lactobacillus plantarum in a mouse burn-sepsis model. Neutrophils are an essential innate defense against pathogens. Therefore, our present study aims to understand the impact of heat-killed probiotic L. plantarum (HKLP) on neutrophil function. Utilizing an in vitro stimulation with HKLP and a burn-infection in vivo model, we determined that administration of HKLP induced significant release of granulocyte-colony stimulating factor (G-CSF) and stimulated the release of pro-and anti-inflammatory cytokines. HKLP had no impact on neutrophil function, such as phagocytosis, oxidative burst, and NETosis, but increased apoptosis and activated neutrophils. HKLP did not improve survival. Together, contrary to our hypothesis, heat-killed probiotics did not improve neutrophil function and survival outcome in a murine severe burn injury model.


Assuntos
Queimaduras , Lactobacillus plantarum , Probióticos , Sepse , Camundongos , Animais , Neutrófilos , Temperatura Alta , Sepse/terapia
5.
Front Immunol ; 14: 1281674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38193076

RESUMO

Purpose: Earlier research has identified several potentially predictive features including biomarkers associated with trauma, which can be used to assess the risk for harmful outcomes of polytraumatized patients. These features encompass various aspects such as the nature and severity of the injury, accompanying health conditions, immune and inflammatory markers, and blood parameters linked to organ functioning, however their applicability is limited. Numerous indicators relevant to the patients` outcome are routinely gathered in the intensive care unit (ICU) and recorded in electronic medical records, rendering them suitable predictors for risk assessment of polytraumatized patients. Methods: 317 polytraumatized patients were included, and the influence of 29 clinical and biological features on the complication patterns for systemic inflammatory response syndrome (SIRS), pneumonia and sepsis were analyzed with a machine learning workflow including clustering, classification and explainability using SHapley Additive exPlanations (SHAP) values. The predictive ability of the analyzed features within three days after admission to the hospital were compared based on patient-specific outcomes using receiver-operating characteristics. Results: A correlation and clustering analysis revealed that distinct patterns of injury and biomarker patterns were observed for the major complication classes. A k-means clustering suggested four different clusters based on the major complications SIRS, pneumonia and sepsis as well as a patient subgroup that developed no complications. For classification of the outcome groups with no complications, pneumonia and sepsis based on boosting ensemble classification, 90% were correctly classified as low-risk group (no complications). For the high-risk groups associated with development of pneumonia and sepsis, 80% of the patients were correctly identified. The explainability analysis with SHAP values identified the top-ranking features that had the largest impact on the development of adverse outcome patterns. For both investigated risk scenarios (infectious complications and long ICU stay) the most important features are SOFA score, Glasgow Coma Scale, lactate, GGT and hemoglobin blood concentration. Conclusion: The machine learning-based identification of prognostic feature patterns in patients with traumatic injuries may improve tailoring personalized treatment modalities to mitigate the adverse outcomes in high-risk patient clusters.


Assuntos
Doenças Transmissíveis , Traumatismo Múltiplo , Pneumonia , Sepse , Humanos , Traumatismo Múltiplo/diagnóstico , Sepse/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Medição de Risco , Ácido Láctico , Aprendizado de Máquina
6.
Proc Natl Acad Sci U S A ; 119(13): e2120691119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312372

RESUMO

Fatty acid composition in the Western diet has shifted from saturated to polyunsaturated fatty acids (PUFAs), and specifically to linoleic acid (LA, 18:2), which has gradually increased in the diet over the past 50 y to become the most abundant dietary fatty acid in human adipose tissue. PUFA-derived oxylipins regulate a variety of biological functions. The cytochrome P450 (CYP450)­formed epoxy fatty acid metabolites of LA (EpOMEs) are hydrolyzed by the soluble epoxide hydrolase enzyme (sEH) to dihydroxyoctadecenoic acids (DiHOMEs). DiHOMEs are considered cardioprotective at low concentrations but at higher levels have been implicated as vascular permeability and cytotoxic agents and are associated with acute respiratory distress syndrome in severe COVID-19 patients. High EpOME levels have also correlated with sepsis-related fatalities; however, those studies failed to monitor DiHOME levels. Considering the overlap of burn pathophysiology with these pathologies, the role of DiHOMEs in the immune response to burn injury was investigated. 12,13-DiHOME was found to facilitate the maturation and activation of stimulated neutrophils, while impeding monocyte and macrophage functionality and cytokine generation. In addition, DiHOME serum concentrations were significantly elevated in burn-injured mice and these increases were ablated by administration of 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), a sEH inhibitor. TPPU also reduced necrosis of innate and adaptive immune cells in burned mice, in a dose-dependent manner. The findings suggest DiHOMEs are a key driver of immune cell dysfunction in severe burn injury through hyperinflammatory neutrophilic and impaired monocytic actions, and inhibition of sEH might be a promising therapeutic strategy to mitigate deleterious outcomes in burn patients.


Assuntos
Queimaduras , Sepse , Animais , Epóxido Hidrolases/metabolismo , Humanos , Imunidade Inata , Inflamação/tratamento farmacológico , Ácido Linoleico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Sepse/tratamento farmacológico
7.
J Surg Res ; 274: 94-101, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35134595

RESUMO

INTRODUCTION: Current surgical guidelines for the treatment of intra-abdominal sepsis recommend interventional source control as the key element of therapy, alongside resuscitation and antibiotic administration. Past trials attempted to predict the success of interventional source control to assess whether further interventional therapy is needed. However, no predictive score could be developed. MATERIALS AND METHODS: We utilized an established murine abdominal sepsis model, the cecal ligation and puncture (CLP), and performed a successful surgical source control intervention after full development of sepsis, the CLP-excision (CLP/E). We then sought to evaluate the success of the source control by characterizing circulating neutrophil phenotype and functionality 24 h postintervention. RESULTS: We showed a significant relative increase of neutrophils and a significant absolute and relative increase of activated neutrophils in septic mice. Source control with CLP/E restored these numbers back to baseline. Moreover, main neutrophil functions, the acidification of cell compartments, such as lysosomes, and the production of Tumor Necrosis Factor-alpha (TNF-α), were impaired in septic mice but restored after CLP/E intervention. CONCLUSIONS: Neutrophil characterization by phenotyping and evaluating their functionality indicates successful source control in septic mice and can serve as a prognostic tool. These findings provide a rationale for the phenotypic and functional characterization of neutrophils in human patients with infection. Further studies will be needed to determine whether a predictive score for the assessment of successful surgical source control can be established.


Assuntos
Neutrófilos , Sepse , Animais , Ceco/cirurgia , Modelos Animais de Doenças , Humanos , Ligadura , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/patologia , Sepse/patologia
8.
Immunol Res ; 70(2): 185-196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932195

RESUMO

CD4+FoxP3+ regulatory T cells (CD4+ Tregs) are known to dampen inflammation following severe trauma. Platelets were shown to augment their posttraumatic activation in burn injury, but the exact mechanisms remain unclear. We hypothesized that platelet activation mechanisms via GPIIb/IIIa, fibrinogen, and PAR4 have an immunological effect and modulate CD4+ Treg activation early after trauma. Therefore, C57Bl/6 N mice were injected with tirofiban (GPIIb/IIIa inhibition), ancrod (fibrinogen splitting enzyme), or tcY-NH2 (selective PAR4 antagonist peptide) before inducing a third-degree burn injury of 25% of the total body surface area. Changes in coagulation, and local and systemic CD4+ Treg activity were assessed via rotational thromboelastometry (ROTEM®) and phospho-flow cytometry 1 h post intervention. The inhibition of GPIIb/IIIa and fibrinogen locally led to a higher basic activity of CD4+ Tregs compared to non-inhibited animals. In contrast, PAR4 disruption on platelets locally led to an increased posttraumatic activation of CD4+ Tregs. Fibrinogen led to complete elimination of coagulation, whereas GPIIb/IIIa or PAR4 inhibition did not. GPIIb/IIIa receptor and fibrinogen inhibition increase CD4+ Tregs activity independently of trauma. Both are crucial for thrombus formation. We suggest platelets trapped in thrombi are unable to interact with CD4+ Tregs but augment their activity when circulating freely. In contrast, PAR4 seems to reduce CD4+ Treg activation following trauma. In summary, GPIIb/IIIa-, PAR4-, and fibrinogen-dependent pathways in platelets modulate CD4+ Treg baseline activity, independently from their hemostatic functionality. PAR4-dependent pathways modulate the posttraumatic interplay of platelets and CD4+ Tregs.


Assuntos
Queimaduras , Hemostáticos , Trombose , Animais , Plaquetas , Queimaduras/metabolismo , Fibrinogênio/metabolismo , Hemostáticos/metabolismo , Hemostáticos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Linfócitos T Reguladores
9.
Cent Eur J Immunol ; 46(3): 283-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764800

RESUMO

CD4+ FoxP3+ regulatory T cells (CD4+ Tregs) are important for the posttraumatic anti-inflammatory host response. As described previously, platelets are able to modulate CD4+ Treg activity in a reciprocally activating interaction following injury. The underlying mechanisms of the posttraumatic interaction between platelets and CD4+ Tregs remain unclear. We investigated the potential influence of CD40L and P-selectin, molecules known to be involved in direct cell contact of these cell types. In a murine burn injury model, the potential interaction pathways were addressed using CD40L- and P-selectin-deficient mice. Draining lymph nodes were harvested following trauma (1 h) and following a sham procedure. Early rapid activation of CD4+ Tregs was assessed by phospho-flow cytometry (signaling molecules (p)PKC-δ and (p)ZAP-70). Platelet function was analyzed performing rotational thromboelastometry (ROTEM). We hypothesized that disruption of the direct cell-cell contact via CD40L and P-selectin would affect posttraumatic activation of CD4+ Tregs and influence the hemostatic function of platelets. Indeed, while injury induced early activation of CD4+ Tregs in wild-type mice (ZAP-70: p = 0.13, pZAP-70: p < 0.05, PKC-δ: p < 0.05, pPKC-δ: p < 0.05), disruption of CD40L-dependent interaction (ZAP-70: p = 0.57, pZAP-70: p = 0.68, PKC-δ: p = 0.68, pPKC-δ: p = 0.9) or P-selectin-dependent interaction (ZAP-70: p = 0.78, pZAP-70: p = 0.58, PKC-δ: p = 0.81, pPKC-δ: p = 0.73) resulted in reduced posttraumatic activation. Furthermore, hemostatic function was impaired towards hypocoagulability in either deficiency. Our results suggest that the posttraumatic activation of CD4+ Tregs and hemostatic function of platelets are affected by direct cell-cell-signaling via CD40L and P-selectin.

10.
Sci Rep ; 11(1): 16555, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400718

RESUMO

Oxylipins modulate the behavior of immune cells in inflammation. Soluble epoxide hydrolase (sEH) converts anti-inflammatory epoxyeicosatrienoic acid (EET) to dihydroxyeicosatrienoic acid (DHET). An sEH-inhibitor, TPPU, has been demonstrated to ameliorate lipopolysaccharide (LPS)- and sepsis-induced inflammation via EETs. The immunomodulatory role of DHET is not well characterized. We hypothesized that TPPU dampens inflammation and that sEH-derived DHET alters neutrophil functionality in burn induced inflammation. Outbred mice were treated with vehicle, TPPU or 14,15-DHET and immediately subjected to either sham or dorsal scald 28% total body surface area burn injury. After 6 and 24 h, interleukin 6 (IL-6) serum levels and neutrophil activation were analyzed. For in vitro analyses, bone marrow derived neutrophil functionality and mRNA expression were examined. In vivo, 14,15-DHET and IL-6 serum concentrations were decreased after burn injury with TPPU administration. In vitro, 14,15-DHET impaired neutrophil chemotaxis, acidification, CXCR1/CXCR2 expression and reactive oxygen species (ROS) production, the latter independent from p38MAPK and PI3K signaling. We conclude that TPPU administration decreases DHET post-burn. Furthermore, DHET downregulates key neutrophil immune functions and mRNA expression. Altogether, these data reveal that TPPU not only increases anti-inflammatory and inflammation resolving EET levels, but also prevents potential impairment of neutrophils by DHET in trauma.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Anti-Inflamatórios/uso terapêutico , Queimaduras/tratamento farmacológico , Neutrófilos/imunologia , Compostos de Fenilureia/uso terapêutico , Piperidinas/uso terapêutico , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Queimaduras/imunologia , Queimaduras/metabolismo , Queimaduras/patologia , Citocinas/sangue , Epóxido Hidrolases/antagonistas & inibidores , Feminino , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Neutrófilos/classificação , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Fosfatidilinositol 3-Quinases/biossíntese , Fosfatidilinositol 3-Quinases/genética , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Quimiocinas/fisiologia , Explosão Respiratória/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/genética
11.
Front Immunol ; 12: 622601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717127

RESUMO

In sepsis and trauma, pathogens and injured tissue provoke a systemic inflammatory reaction which can lead to overwhelming inflammation. Concurrent with the innate hyperinflammatory response is adaptive immune suppression that can become chronic. A current key issue today is that patients who undergo intensive medical care after sepsis or trauma have a high mortality rate after being discharged. This high mortality is thought to be associated with persistent immunosuppression. Knowledge about the pathophysiology leading to this state remains fragmented. Immunosuppressive cytokines play an essential role in mediating and upholding immunosuppression in these patients. Specifically, the cytokines Interleukin-10 (IL-10), Transforming Growth Factor-ß (TGF-ß) and Thymic stromal lymphopoietin (TSLP) are reported to have potent immunosuppressive capacities. Here, we review their ability to suppress inflammation, their dynamics in sepsis and trauma and what drives the pathologic release of these cytokines. They do exert paradoxical effects under certain conditions, which makes it necessary to evaluate their functions in the context of dynamic changes post-sepsis and trauma. Several drugs modulating their functions are currently in clinical trials in the treatment of other pathologies. We provide an overview of the current literature on the effects of IL-10, TGF-ß and TSLP in sepsis and trauma and suggest therapeutic approaches for their modulation.


Assuntos
Produtos Biológicos/uso terapêutico , Sepse/imunologia , Ferimentos e Lesões/imunologia , Animais , Ensaios Clínicos como Assunto , Citocinas/antagonistas & inibidores , Humanos , Evasão da Resposta Imune , Tolerância Imunológica , Terapia de Imunossupressão , Sepse/tratamento farmacológico , Ferimentos e Lesões/tratamento farmacológico
12.
Surg Infect (Larchmt) ; 22(1): 113-120, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32429749

RESUMO

Background: Burn injury continues to be a significant cause of morbidity and death, with infectious complications being the primary cause of death. Patients are susceptible to overwhelming infection secondary to both the physical breakdown of the skin and mucosal barrier and the immune dysfunction that accompanies the inflammatory response to a major burn. With resistance to traditional antibiosis looming as a serious threat to patient outcome, advancement in the treatment of burn infections is imperative. Methods: Between February 15 and March 15, 2020, a search of Pubmed and clinicaltrials.gov was performed using search terms such as "burn immunotherapy," "therapeutic microorganisms in burn," "burn infection clinical trials," and applicable variations. Results: Topical antimicrobial drugs continue to be standard of care for burn wound injuries, but personalized and molecular treatments that rely on immune manipulation of the host show great promise. We discuss novel therapeutics for the treatment of burn infection: Probiotics and therapeutic microorganisms, immune modulators, tailored monoclonal antibodies, and extracellular vesicles and proteins. Conclusions: The treatment strategies discussed employ manipulation of structure and function in host immune cells and pathogen virulence for improved outcomes in burn infection.


Assuntos
Queimaduras , Doenças Transmissíveis , Infecção dos Ferimentos , Queimaduras/terapia , Humanos , Infecção dos Ferimentos/tratamento farmacológico
13.
Shock ; 55(6): 723-741, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021569

RESUMO

ABSTRACT: Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state affecting patients who have a prolonged recovery after the acute phase of a large inflammatory insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular dysfunction. Currently, relevant immunosuppressive functions have been attributed to both innate and adaptive immune cells. However, there are significant gaps in our knowledge, as for trauma and sepsis the immunosuppressive functions of these cells have mostly been described in acute phase of inflammation so far, and their clinical relevance for the development of prolonged immunosuppression is mostly unknown. It is suggested that the initial immune imbalance determines the development of PCIS. Additionally, it remains unclear what distinguishes the onset of immune dysfunction in trauma and sepsis and how this drives immunosuppression in these cells. In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural killer T cells (NKT cells), TCR-a CD4- CD8- double-negative T cells (DN T cells), and B cells can contribute to the development of post-traumatic and septic immunosuppression. Altogether, we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression and dysfunction to the development of chronic immune disbalance. Further, we will provide an overview of promising diagnostic and therapeutic interventions, whose potential to overcome the detrimental immunosuppression after trauma and sepsis is currently being tested.


Assuntos
Tolerância Imunológica/imunologia , Inflamação/imunologia , Linfócitos/imunologia , Doenças Metabólicas/imunologia , Sepse/imunologia , Ferimentos e Lesões/imunologia , Humanos , Síndrome
14.
Biochem Biophys Res Commun ; 530(1): 278-284, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828299

RESUMO

The disease burden of sepsis continues to increase, with intraabdominal contamination being a significant source of infection. Sepsis is a syndrome involving both an increase in systemic inflammation as well as a regulatory component. We have previously demonstrated that neutrophils are significant IL-10 producers in the abdomen during sepsis. Here, we sought to further characterize these neutrophils and elucidate potential underlying mechanisms resulting in IL-10 generation. Using transcriptional reporter mice, we observed that IL-10 producing neutrophils were activated, non-apoptotic, and expressed C-X-C chemokine receptor type 4-expressing. Further, we observed that active Signal Transducer and Activator of Transcription 1 expression was significantly increased in IL-10 producing versus non-IL-10 producing neutrophils. During sepsis, IFN-γ blockade lead to a decrease of neutrophil IL-10 production, while peritoneal CD4 T cells were found to be the most numerous acute producers of IFN-γ. Altogether, this report demonstrates that during sepsis, mature neutrophils can potentially dampen local inflammation by IL-10 production and this can be orchestrated by CD4 T cells through an IFN-γ dependent manner.


Assuntos
Interferon gama/imunologia , Interleucina-10/imunologia , Neutrófilos/imunologia , Sepse/imunologia , Doença Aguda , Animais , Apoptose , Modelos Animais de Doenças , Camundongos , Infiltração de Neutrófilos , Neutrófilos/patologia , Peritônio/imunologia , Peritônio/patologia , Sepse/patologia
15.
Allergy ; 75(9): 2219-2228, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32589303

RESUMO

The impact of climate change on the environment, biosphere, and biodiversity has become more evident in the recent years. Human activities have increased atmospheric concentrations of carbon dioxide (CO2 ) and other greenhouse gases. Change in climate and the correlated global warming affects the quantity, intensity, and frequency of precipitation type as well as the frequency of extreme events such as heat waves, droughts, thunderstorms, floods, and hurricanes. Respiratory health can be particularly affected by climate change, which contributes to the development of allergic respiratory diseases and asthma. Pollen and mold allergens are able to trigger the release of pro-inflammatory and immunomodulatory mediators that accelerate the onset the IgE-mediated sensitization and of allergy. Allergy to pollen and pollen season at its beginning, in duration and intensity are altered by climate change. Studies showed that plants exhibit enhanced photosynthesis and reproductive effects and produce more pollen as a response to high atmospheric levels of carbon dioxide (CO2 ). Mold proliferation is increased by floods and rainy storms are responsible for severe asthma. Pollen and mold allergy is generally used to evaluate the interrelation between air pollution and allergic respiratory diseases, such as rhinitis and asthma. Thunderstorms during pollen seasons can cause exacerbation of respiratory allergy and asthma in patients with hay fever. A similar phenomenon is observed for molds. Measures to reduce greenhouse gas emissions can have positive health benefits.


Assuntos
Asma , Hipersensibilidade , Alérgenos , Asma/epidemiologia , Asma/etiologia , Mudança Climática , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/etiologia , Pólen
16.
Int J Mol Sci ; 21(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370039

RESUMO

It was hypothesized that strontium (Sr)-doped ß-tricalcium phosphate (TCP)-based scaffolds have a positive effect on the regeneration of large bone defects (LBD). Readouts in our mice models were nuclear factor-kappa beta (NF-κB) activity and vascular endothelial growth factor receptor-2 (VEGFR-2) promoter activity during the healing process. A 2-mm critical-size femoral fracture was performed in transgenic NF-κB- and VEGFR-2-luciferase reporter mice. The fracture was filled with a 3D-printed ß-TCP scaffold with or without Sr. A bioluminescence in-vivo imaging system was used to sequentially investigate NF-κB and VEGFR-2 expression for two months. After sacrifice, soft and osseous tissue formation in the fracture sites was histologically examined. NF-κB activity increased in the ß-TCP + Sr group in the latter stage (day 40-60). VEGFR-2 activity increased in the + Sr group from days 0-15 but decreased and showed significantly less activity than the ß-TCP and non-scaffold groups from days 40-60. The new bone formation and soft tissue formation in the + Sr group were significantly higher than in the ß-TCP group, whereas the percentage of osseous tissue formation in the ß-TCP group was significantly higher than in the ß-TCP + Sr group. We analyzed longitudinal VEGFR-2 promoter activity and NF-κB activity profiles, as respective agents of angiogenesis and inflammation, during LBD healing. The extended inflammation phase and eventually more rapid resorption of scaffold caused by the addition of strontium accelerates temporary bridging of the fracture gaps. This finding has the potential to inform an improved treatment strategy for patients who suffer from osteoporosis.


Assuntos
Fosfatos de Cálcio/química , NF-kappa B/genética , Fosfatidiletanolaminas/química , Regiões Promotoras Genéticas , Estrôncio/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Regeneração Óssea , Substitutos Ósseos , Osso e Ossos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Alicerces Teciduais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Cell Immunol ; 331: 137-145, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29954581

RESUMO

Platelets modulate the immune system following injury by interacting with CD4+ T regulatory cells (CD4+ Tregs). The underlying mechanisms remain unsolved. We hypothesize paracrine interactions via Tumor necrosis factor-alpha (TNFα)-, Toll like receptor-4 (TLR4)-, and Interleukin-10 (IL-10). In the murine burn injury model, CD4+ Treg activation pathways were selectively addressed using TNFR2-, TLR4- and IL-10-deficient mice. The CD4+ Treg signalling molecule PKC-θ was analyzed using phospho-flow cytometry to detect rapid cell activation. Thromboelastometry (ROTEM®) was used to assess platelet activation. Injury induced significant early activation of CD4+ Tregs, disruption of TNFR2 and TLR4 activation pathways resulted in lower activity. The disruption of IL-10 crosstalk had no significant impact. Selective disruption of paracrine interactions is associated with changes in posttraumatic hemostasis parameters. TNFR2- and TLR4-dependent pathways modulate the activation of CD4+ Tregs following trauma. In contrast, we did not observe a role of IL-10 in the posttraumatic activation of CD4+ Tregs. ONE SENTENCE SUMMARY: TLR4- and TNFR2-dependent mechanisms, but not IL-10-dependent pathways, modulate the anti-inflammatory response of CD4+ Tregs following trauma.


Assuntos
Queimaduras/imunologia , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Queimaduras/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária/imunologia , Proteína Quinase C-theta/imunologia , Proteína Quinase C-theta/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
18.
J Hematol Oncol ; 9: 4, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26810307

RESUMO

BACKGROUND: Bone marrow (BM) niches are often inaccessible for controlled experimentation due to their difficult accessibility, biological complexity, and three-dimensional (3D) geometry. METHODS: Here, we report the development and characterization of a BM model comprising of cellular and structural components with increased potential for hematopoietic recapitulation at ectopic transplantation sites. Cellular components included mesenchymal stromal cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs). Structural components included 3D ß-tricalcium phosphate (ß-TCP) scaffolds complemented with Matrigel or collagen I/III gels for the recreation of the osteogenic/extracellular character of native BM. RESULTS: In vitro, ß-TCP/Matrigel combinations robustly maintained proliferation, osteogenic differentiation, and matrix remodeling capacities of MSCs and maintenance of HSPCs function over time. In vivo, scaffolds promoted strong and robust recruitment of hematopoietic cells to sites of ectopic transplantation, vascularization, and soft tissue formation. CONCLUSIONS: Our tissue-engineered BM system is a powerful tool to explore the regulatory mechanisms of hematopoietic stem and progenitor cells for a better understanding of hematopoiesis in health and disease.


Assuntos
Células da Medula Óssea/fisiologia , Medula Óssea/fisiologia , Hematopoese/fisiologia , Nicho de Células-Tronco/fisiologia , Engenharia Tecidual/métodos , Animais , Medula Óssea/metabolismo , Fosfatos de Cálcio/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Colágeno/metabolismo , Combinação de Medicamentos , Células-Tronco Hematopoéticas/fisiologia , Humanos , Laminina , Células-Tronco Mesenquimais/fisiologia , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Osteogênese/fisiologia , Proteoglicanas , Reprodutibilidade dos Testes , Transplante de Células-Tronco/métodos , Alicerces Teciduais
19.
Biomed Tech (Berl) ; 61(3): 267-79, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25870955

RESUMO

Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure ß-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for ß-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the ß-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.


Assuntos
Materiais Biocompatíveis/síntese química , Substitutos Ósseos/síntese química , Fosfatos de Cálcio/síntese química , Metacrilatos/síntese química , Engenharia Tecidual/métodos , Compostos de Vinila/síntese química , Materiais Biocompatíveis/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Sistemas de Liberação de Medicamentos , Metacrilatos/química , Próteses e Implantes/normas , Compostos de Vinila/química
20.
Immunol Res ; 64(2): 508-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26471021

RESUMO

CD4+ T regulatory cells (Tregs) play a pivotal role in the anti-inflammatory immune response following trauma. The mechanisms of CD4+ Treg activation are mostly unknown. Here, we hypothesize that platelets regulate CD4+ Treg activation following trauma. In a murine burn injury model (male C57Bl/6N mice), depletion of platelets or CD4+ Tregs was conducted. Draining lymph nodes, blood and spleen were harvested 2 h and 7 days after trauma. CD4+ Treg activation was measured using phospho- and conventional flow cytometry. Platelet activation was analyzed using thromboelastometry and flow cytometry. Trauma differentially activates CD4+ T cells, early after trauma only CD4+ Tregs are activated. Following burn injury, platelets augment the activation of CD4+ Tregs. This effect could only be seen early after trauma. While CD4+ Tregs influence hemostasis early following trauma, platelet activation markers were unchanged. Beyond their role in hemostasis, platelets are able to modulate the immunologic host response to trauma-induced injury by augmenting the activation of CD4+ Tregs. CD4+ Treg activation following trauma is considered protective. In addition, CD4+ Tregs are capable of modulating the hemostatic function of platelets. For the first time, we could show reciprocal activation of platelets and CD4+ Tregs as part of the protective immune response following trauma.


Assuntos
Plaquetas/imunologia , Plaquetas/metabolismo , Comunicação Celular , Imunomodulação , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/metabolismo , Animais , Biomarcadores , Queimaduras/imunologia , Queimaduras/metabolismo , Modelos Animais de Doenças , Homeostase , Ativação Linfocitária/imunologia , Masculino , Camundongos , Selectina-P/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Tetraspanina 30/metabolismo , Receptor Toll-Like 9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA