Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 116(4): 1136-1151, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37150955

RESUMO

Tomato (Solanum lycopersicum) is a prominent fruit with rich genetic resources for crop improvement. By using a phenotype-guided screen of over 7900 tomato accessions from around the world, we identified new associations for complex traits such as fruit weight and total soluble solids (Brix). Here, we present the phenotypic data from several years of trials. To illustrate the power of this dataset we use two case studies. First, evaluation of color revealed allelic variation in phytoene synthase 1 that resulted in differently colored or even bicolored fruit. Secondly, in view of the negative relationship between fruit weight and Brix, we pre-selected a subset of the collection that includes high and low Brix values in each category of fruit size. Genome-wide association analysis allowed us to detect novel loci associated with total soluble solid content and fruit weight. In addition, we developed eight F2 biparental intraspecific populations. Furthermore, by taking a phenotype-guided approach we were able to isolate individuals with high Brix values that were not compromised in terms of yield. In addition, the demonstration of novel results despite the high number of previous genome-wide association studies of these traits in tomato suggests that adoption of a phenotype-guided pre-selection of germplasm may represent a useful strategy for finding target genes for breeding.


Assuntos
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Locos de Características Quantitativas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Frutas/genética
2.
Hortic Res ; 9: uhac129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928403

RESUMO

Although autophagy is a conserved mechanism operating across eukaryotes, its effects on crops and especially their metabolism has received relatively little attention. Indeed, whilst a few recent studies have used systems biology tools to look at the consequences of lack of autophagy in maize these focused on leaf tissues rather than the kernels. Here we utilized RNA interference (RNAi) to generate tomato plants that were deficient in the autophagy-regulating protease ATG4. Plants displayed an early senescence phenotype yet relatively mild changes in the foliar metabolome and were characterized by a reduced fruit yield phenotype. Metabolite profiling indicated that metabolites of ATG4-RNAi tomato leaves just exhibited minor alterations while that of fruit displayed bigger difference compared to the WT. In detail, many primary metabolites exhibited decreases in the ATG4-RNAi lines, such as proline, tryptophan and phenylalanine, while the representative secondary metabolites (quinic acid and 3-trans-caffeoylquinic acid) were present at substantially higher levels in ATG4-RNAi green fruits than in WT. Moreover, transcriptome analysis indicated that the most prominent differences were in the significant upregulation of organelle degradation genes involved in the proteasome or chloroplast vesiculation pathways, which was further confirmed by the reduced levels of chloroplastic proteins in the proteomics data. Furthermore, integration analysis of the metabolome, transcriptome and proteome data indicated that ATG4 significantly affected the lipid metabolism, chlorophyll binding proteins and chloroplast biosynthesis. These data collectively lead us to propose a more sophisticated model to explain the cellular co-ordination of the process of autophagy.

3.
Plant Physiol ; 180(1): 185-197, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837347

RESUMO

Thiamin pyrophosphate (TPP) is the active form of vitamin B1 and works as an essential cofactor for enzymes in key metabolic pathways, such as the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway. Although its action as a coenzyme has been well documented, the roles of TPP in plant metabolism are still not fully understood. Here, we investigated the functions of TPP in the regulation of the metabolic networks during photoperiod transition using previously described Arabidopsis (Arabidopsis thaliana) riboswitch mutant plants, which accumulate thiamin vitamers. The results show that photosynthetic and metabolic phenotypes of TPP riboswitch mutants are photoperiod dependent. Additionally, the mutants are more distinct from control plants when plants are transferred from a short-day to a long-day photoperiod, suggesting that TPP also plays a role in metabolic acclimation to the photoperiod. Control plants showed changes in the amplitude of diurnal oscillation in the levels of metabolites, including glycine, maltose, and fumarate, following the photoperiod transition. Interestingly, many of these changes are not present in TPP riboswitch mutant plants, demonstrating their lack of metabolic flexibility. Our results also indicate a close relationship between photorespiration and the TCA cycle, as TPP riboswitch mutants accumulate less photorespiratory intermediates. This study shows the potential role of vitamin B1 in the diurnal regulation of central carbon metabolism in plants and the importance of maintaining appropriate cellular levels of thiamin vitamers for the plant's metabolic flexibility and ability to acclimate to an altered photoperiod.


Assuntos
Arabidopsis/fisiologia , Fotoperíodo , Tiamina Pirofosfato/metabolismo , Aclimatação , Aminoácidos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/fisiologia , Ciclo do Ácido Cítrico , Regulação da Expressão Gênica de Plantas , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mutação , Riboswitch/genética
4.
Nat Commun ; 8: 15212, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508886

RESUMO

Protein complexes of sequential metabolic enzymes, often termed metabolons, may permit direct channelling of metabolites between the enzymes, providing increased control over metabolic pathway fluxes. Experimental evidence supporting their existence in vivo remains fragmentary. In the present study, we test binary interactions of the proteins constituting the plant tricarboxylic acid (TCA) cycle. We integrate (semi-)quantitative results from affinity purification-mass spectrometry, split-luciferase and yeast-two-hybrid assays to generate a single reliability score for assessing protein-protein interactions. By this approach, we identify 158 interactions including those between catalytic subunits of sequential enzymes and between subunits of enzymes mediating non-adjacent reactions. We reveal channelling of citrate and fumarate in isolated potato mitochondria by isotope dilution experiments. These results provide evidence for a functional TCA cycle metabolon in plants, which we discuss in the context of contemporary understanding of this pathway in other kingdoms.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Metabolômica/métodos , Mitocôndrias/metabolismo , Fenômenos Fisiológicos Vegetais , Mapas de Interação de Proteínas/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos
5.
Metabolites ; 3(1): 168-84, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24957896

RESUMO

Algae are divergent organisms having a wide variety of evolutional histories. Although most of them share photosynthetic activity, their pathways of primary carbon metabolism are rather diverse among species. Here we developed a method for gas chromatography-mass spectroscopy (GC-MS) based metabolite profiling for the coccolithophorid alga Emiliania huxleyi, which is one of the most abundant microalgae in the ocean, in order to gain an overview of the pathway of primary metabolism within this alga. Following method optimization, twenty-six metabolites could be detected by this method. Whilst most proteogenic amino acids were detected, no peaks corresponding to malate and fumarate were found. The metabolite profile of E. huxleyi was, however, characterized by a prominent accumulation of mannitol reaching in excess of 14 nmol 106 cells-1. Similarly, the accumulation of the 13C label during short term H13CO3- feeding revealed a massive redistribution of label into mannitol as well as rapid but saturating label accumulation into glucose and several amino acids including aspartate, glycine and serine. These results provide support to previous work suggesting that this species adopts C3 photosynthesis and that mannitol functions as a carbon store in E. huxleyi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA