Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665273

RESUMO

RNA-activated protein kinase (PKR) is a major innate immune factor that senses viral double-stranded RNA (dsRNA) and phosphorylates eukaryotic initiation factor (eIF) 2α. Phosphorylation of the α subunit converts the eIF2αßγ complex into a stoichiometric inhibitor of eukaryotic initiation factor eIF2B, thus halting mRNA translation. To escape this protein synthesis shutoff, viruses have evolved countermechanisms such as dsRNA sequestration, eIF-independent translation by an internal ribosome binding site, degradation of PKR, or dephosphorylation of PKR or of phospho-eIF2α. Here, we report that sandfly fever Sicilian phlebovirus (SFSV) confers such a resistance without interfering with PKR activation or eIF2α phosphorylation. Rather, SFSV expresses a nonstructural protein termed NSs that strongly binds to eIF2B. Although NSs still allows phospho-eIF2α binding to eIF2B, protein synthesis and virus replication are unhindered. Hence, SFSV encodes a unique PKR antagonist that acts by rendering eIF2B resistant to the inhibitory action of bound phospho-eIF2α.IMPORTANCE RNA-activated protein kinase (PKR) is one of the most powerful antiviral defense factors of the mammalian host. PKR acts by phosphorylating mRNA translation initiation factor eIF2α, thereby converting it from a cofactor to an inhibitor of mRNA translation that strongly binds to initiation factor eIF2B. To sustain synthesis of their proteins, viruses are known to counteract this on the level of PKR or eIF2α or by circumventing initiation factor-dependent translation altogether. Here, we report a different PKR escape strategy executed by sandfly fever Sicilian virus (SFSV), a member of the increasingly important group of phleboviruses. We found that the nonstructural protein NSs of SFSV binds to eIF2B and protects it from inactivation by PKR-generated phospho-eIF2α. Protein synthesis is hence maintained and the virus can replicate despite ongoing full-fledged PKR signaling in the infected cells. Thus, SFSV has evolved a unique strategy to escape the powerful antiviral PKR.


Assuntos
Fator de Iniciação 2B em Eucariotos/genética , Interações Hospedeiro-Patógeno , Iniciação Traducional da Cadeia Peptídica , Phlebovirus/genética , Proteínas não Estruturais Virais/metabolismo , eIF-2 Quinase/genética , Células A549 , Animais , Linhagem Celular , Chlorocebus aethiops , Fator de Iniciação 2B em Eucariotos/metabolismo , Células HEK293 , Humanos , Phlebovirus/fisiologia , Fosforilação , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral , eIF-2 Quinase/antagonistas & inibidores
2.
J Infect Dis ; 222(9): 1505-1516, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31970394

RESUMO

BACKGROUND: Bacterial toxins disrupt plasma membrane integrity with multitudinous effects on host cells. The secreted pore-forming toxin listeriolysin O (LLO) of the intracellular pathogen Listeria monocytogenes promotes egress of the bacteria from vacuolar compartments into the host cytosol often without overt destruction of the infected cell. Intracellular LLO activity is tightly controlled by host factors including compartmental pH, redox, proteolytic, and proteostatic factors, and inhibited by cholesterol. METHODS: Combining infection studies of L. monocytogenes wild type and isogenic mutants together with biochemical studies with purified phospholipases, we investigate the effect of their enzymatic activities on LLO. RESULTS: Here, we show that phosphocholine (ChoP), a reaction product of the phosphatidylcholine-specific phospholipase C (PC-PLC) of L. monocytogenes, is a potent inhibitor of intra- and extracellular LLO activities. Binding of ChoP to LLO is redox-independent and leads to the inhibition of LLO-dependent induction of calcium flux, mitochondrial damage, and apoptosis. ChoP also inhibits the hemolytic activities of the related cholesterol-dependent cytolysins (CDC), pneumolysin and streptolysin. CONCLUSIONS: Our study uncovers a strategy used by L. monocytogenes to modulate cytotoxic LLO activity through the enzymatic activity of its PC-PLC. This mechanism appears to be widespread and also used by other CDC pore-forming toxin-producing bacteria.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Listeria monocytogenes/efeitos dos fármacos , Fosforilcolina/farmacologia , Apoptose , Cálcio/metabolismo , Caspase 3/metabolismo , Células HeLa , Humanos , Listeria monocytogenes/enzimologia , Listeria monocytogenes/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Front Immunol ; 8: 842, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785264

RESUMO

BACKGROUND: Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS: The presence of α, ß, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS: HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION: Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.

4.
J Biol Chem ; 287(28): 23332-45, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22570492

RESUMO

Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfate A (CSA). One vaccine strategy is to block this interaction with VAR2CSA-specific antibodies. It is a priority to define a small VAR2CSA fragment that can be used in an adhesion blocking vaccine. In this, the obvious approach is to define regions of VAR2CSA involved in receptor binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with nanomolar affinity, and that the CSA-binding site lies in the N-terminal part of the protein. In this study we define the minimal binding region by truncating VAR2CSA and analyzing CSA binding using biosensor technology. We show that the core CSA-binding site lies within the DBL2X domain and parts of the flanking interdomain regions. This is in contrast to the idea that single domains do not possess the structural requirements for specific CSA binding. Small-angle x-ray scattering measurements enabled modeling of VAR2CSA and showed that the CSA-binding DBL2X domain is situated in the center of the structure. Mutating classic sulfate-binding sites in VAR2CSA, along with testing dependence of ionic interactions, suggest that the CSA binding is not solely dependent on the sulfated CSA structure. Based on these novel PfEMP1 structure-function studies, we have constructed a small VAR2CSA antigen that has the capacity to induce highly adhesion-blocking antibodies.


Assuntos
Antígenos de Protozoários/imunologia , Sulfatos de Condroitina/imunologia , Malária Falciparum/imunologia , Placenta/imunologia , Plasmodium falciparum/imunologia , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Sítios de Ligação/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Feminino , Interações Hospedeiro-Parasita , Humanos , Soros Imunes/imunologia , Soros Imunes/metabolismo , Imunização , Cinética , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Modelos Moleculares , Mutação , Placenta/metabolismo , Placenta/parasitologia , Plasmodium falciparum/fisiologia , Gravidez , Complicações Parasitárias na Gravidez , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA