RESUMO
Long Island Sound (LIS) frequently experiences ozone (O3) exceedance events that surpass national ambient air quality standards (NAAQS) due to complex driving factors. The underlying mechanisms governing summertime O3 pollution are investigated through collaborative observations from lidar remote sensing and ground samplers during the 2018 LIS Tropospheric O3 Study (LISTOS). Regional transport and local chemical reactions are identified as the two key driving factors behind the observed O3 episodes in LIS. An enhanced laminar structure is observed in the O3 vertical structure in the atmospheric boundary layer (i.e., 0-2 km layer) for the case dominated by regional transport. An O3 formation regime shift is found in ozone-precursor sensitivity (OPS) for the O3 exceedance event dominated by regional transport with NOx-enriched air mass transport from the New York City (NYC) urban area to LIS. Furthermore, the Integrated Process Rate (IPR) analysis demonstrates that transport from the NYC urban area contributed 40% and 27.1% of surface O3 enhancement to the cases dominated by regional transport and local production, respectively. This study provides scientific evidence to uncovers two key processes that govern summertime O3 pollution over LIS and can help to improve emission control strategies to meet the attainment standards for ambient O3 levels over LIS and other similar coastal areas.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar/análise , Cidade de Nova Iorque , ChinaRESUMO
Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg â d-1 â km-2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of â¼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.
Assuntos
Poluentes Atmosféricos/análise , Ozônio , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Poluição do Ar , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Humanos , Modelos Teóricos , Monoterpenos/análise , Cidade de Nova Iorque , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Odorantes/análise , Densidade Demográfica , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/químicaRESUMO
Air pollution associated with wildfire smoke transport during the summer can significantly affect ozone (O3) and particulate matter (PM) concentrations, even in heavily populated areas like New York City (NYC). Here, we use observations from aircraft, ground-based lidar, in-situ analyzers and satellite to study and assess wildfire smoke transport, vertical distribution, optical properties, and potential impact on air quality in the NYC urban and coastal areas during the summer 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). We investigate an episode of dense smoke transported and mixed into the planetary boundary layer (PBL) on August 15-17, 2018. The horizontal advection of the smoke is shown to be characterized with the prevailing northwest winds in the PBL (velocity > 10 m/s) based on Doppler wind lidar measurements. The wildfire sources and smoke transport paths from the northwest US/Canada to northeast US are identified from the NOAA hazard mapping system (HMS) fires and smoke product and NOAA-HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory analysis. The smoke particles are distinguished from the urban aerosols by showing larger lidar-ratio (70-sr at 532-nm) and smaller depolarization ratio (0.02) at 1064-nm using the NASA High Altitude Lidar Observatory (HALO) airborne high-spectral resolution lidar (HSRL) measurements. The extinction-related angstrom exponents in the near-infrared (IR at 1020-1640 nm) and Ultraviolet (UV at 340-440 nm) from NASA-Aerosol Robotic Network (AERONET) product show a reverse variation trend along the smoke loadings, and their absolute differences indicate strong correlation with the smoke-Aerosol Optical Depth (AOD) (R > 0.94). We show that the aloft smoke plumes can contribute as much as 60-70% to the column AOD and that concurrent high-loadings of O3, carbon monoxide (CO), and black carbon (BC) were found in the elevated smoke layers from the University of Maryland (UMD) aircraft in-situ observations. Meanwhile, the surface PM2.5 (PM with diameter ≤ 2.5 µm), organic carbon (OC) and CO measurements show coincident and sharp increase (e.g., PM2.5 from 5 µg/m3 before the plume intrusion to ~30 µg/m3) with the onset of the plume intrusions into the PBL along with hourly O3 exceedances in the NYC region. We further evaluate the NOAA-National Air Quality Forecasting Capability (NAQFC) model PBL-height, PM2.5, and O3 with the observations and demonstrate good consistency near the ground during the convective PBL period, but significant bias at other times. The aloft smoke layers are sometimes missed by the model.
RESUMO
The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of cross-instrument calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the "Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ)mission and the "Front Range Air Pollution and Photochemistry Éxperiment" (FRAPPÉ)to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. In terms of the range-resolving capability, the TOLNet lidars measured vertical ozone structures with an accuracy generally better than ±15% within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than ±5% for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate very good measurement accuracy for these three TOLNet lidars, making them suitable for use in air quality, satellite validation, and ozone modeling efforts.
RESUMO
An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of Deriving Information on Surface COnditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NOx Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.