Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Respir Med ; 6(1): 389-397, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390523

RESUMO

Objective: Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure. Methods: Acute (SM 4.2 mg/kg, 24 hrs), subacute (SM 0.8 mg/kg, day 7), subacute (SM 2.1 mg/kg, day 14), and chronic (SM 1.2 mg/kg, day 29) SM models were utilized. Results: Each SM model exhibited significant increases in eNAMPT expression (lung homogenates) and increased levels of phosphorylated NFkB and NOX4. Lung fibrosis (Trichrome staining) was observed in both sub-acute and chronic SM models in conjunction with elevated smooth muscle actin (SMA), TGFß, and IL-1ß expression. SM-exposed rats receiving ALT-100 (1 or 4 mg/kg, weekly) exhibited increased survival, highly significant reductions in histologic/biochemical evidence of lung inflammation and fibrosis (Trichrome staining, decreased pNFkB, SMA, TGFß, NOX4), decreased airways strictures, and decreased plasma cytokine levels (eNAMPT, IL-6, IL-1ß. TNFα). Conclusion: The highly druggable, eNAMPT/TLR4 signaling pathway is a key contributor to SM-induced ROS production, inflammatory lung injury and fibrosis. The ALT-100 mAb is a potential medical countermeasure to address the unmet need to reduce SM-associated lung pathobiology/mortality.

2.
Front Med (Lausanne) ; 9: 1012827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388923

RESUMO

Background: Progressive pulmonary fibrosis is a serious complication in subjects with sarcoidosis. The absence of reliable, non-invasive biomarkers that detect early progression exacerbates the difficulty in predicting sarcoidosis severity. To potentially address this unmet need, we evaluated a panel of markers for an association with sarcoidosis progression (HBEGF, NAMPT, IL1-RA, IL-6, IL-8, ANG-2). This panel encompasses proteins related to inflammation, vascular injury, cell proliferation, and fibroblast mitogenesis processes. Methods: Plasma biomarker levels and biomarker protein expression in lung and lymph nodes tissues (immunohistochemical studies) from sarcoidosis subjects with limited disease and progressive (complicated) sarcoidosis were performed. Gene expression of the protein-coding genes included in this panel was analyzed using RNAseq in sarcoidosis granulomatous tissues from lung and lymph nodes. Results: Except for IL-8, plasma levels of each biomarker-eNAMPT, IL-1RA, IL-6, ANG-2, and HBEGF-were significantly elevated in sarcoidosis subjects compared to controls. In addition, plasma levels of HBEGF were elevated in complicated sarcoidosis, while eNAMPT and ANG-2 were observed to serve as markers of lung fibrosis in a subgroup of complicated sarcoidosis. Genomic studies corroborated HBEGF and NAMPT among the top dysregulated genes and identified cytokine-related and fibrotic pathways in lung granulomatous tissues from sarcoidosis. Conclusion: These findings suggest HBEGF, eNAMPT, and ANG-2 may serve as potential novel indicators of the clinical severity of sarcoidosis disease.

3.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166562, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179995

RESUMO

The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.


Assuntos
Lesão Pulmonar Aguda , Permeabilidade Capilar , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , GTP Fosfo-Hidrolases/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Suínos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
4.
Front Physiol ; 13: 916159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812318

RESUMO

Background: Numerous potential ARDS therapeutics, based upon preclinical successful rodent studies that utilized LPS challenge without mechanical ventilation, have failed in Phase 2/3 clinical trials. Recently, ALT-100 mAb, a novel biologic that neutralizes the TLR4 ligand and DAMP, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), was shown to reduce septic shock/VILI-induced porcine lung injury when delivered 2 h after injury onset. We now examine the ALT-100 mAb efficacy on acute kidney injury (AKI) and lung fluid balance in a porcine ARDS/VILI model when delivered 6 h post injury. Methods/Results: Compared to control PBS-treated pigs, exposure of ALT-100 mAb-treated pigs (0.4 mg/kg, 2 h or 6 h after injury initiation) to LPS-induced pneumonia/septic shock and VILI (12 h), demonstrated significantly diminished lung injury severity (histology, BAL PMNs, plasma cytokines), biochemical/genomic evidence of NF-kB/MAP kinase/cytokine receptor signaling, and AKI (histology, plasma lipocalin). ALT-100 mAb treatment effectively preserved lung fluid balance reflected by reduced BAL protein/tissue albumin levels, lung wet/dry tissue ratios, ultrasound-derived B lines, and chest radiograph opacities. Delayed ALT-100 mAb at 2 h was significantly more protective than 6 h delivery only for plasma eNAMPT while trending toward greater protection for remaining inflammatory indices. Delayed ALT-100 treatment also decreased lung/renal injury indices in LPS/VILI-exposed rats when delivered up to 12 h after LPS. Conclusions: These studies indicate the delayed delivery of the eNAMPT-neutralizing ALT-100 mAb reduces inflammatory lung injury, preserves lung fluid balance, and reduces multi-organ dysfunction, and may potentially address the unmet need for novel therapeutics that reduce ARDS/VILI mortality.

5.
Pulm Circ ; 12(2): e12061, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35514774

RESUMO

Global knockout of the nonmuscle isoform of myosin light-chain kinase (nmMLCK), a primary cellular regulator of cytoskeletal machinery, is strongly protective in preclinical murine models of inflammatory lung injury. The current study was designed to assess the specific contribution of endothelial cell (EC) nmMLCK to the severity of murine inflammatory lung injury produced by lipopolysaccharide (LPS) and mechanical ventilation ventilator-induced lung injury or ventilation (VILI). Responses to combined LPS/VILI exposure were assessed in: (i) wild-type (WT) C57BL/6J mice; (ii) transgenic mice with global deletion of nmMLCK (nmMylk -/-); (iii) transgenic nmMylk -/- mice with overexpression of nmMLCK restricted to the endothelium (nmMylk -/-/ec-tg+). Lung inflammation indices included lung histology, bronchoalveolar lavage (BAL) polymorphonuclear leukocytes (PMNs), lung protein biochemistry, tissue albumin levels, Evans blue dye (EBD) lung extravasation, and plasma cytokines (interleukin-6 [IL-6], keratinocyte chemoattractant [KC]/IL-8, IL-1bß, extracellular nicotinamide phosphoribosyltransferase, tumor necrosis factor-α). Compared to WT C57BL/6J mice, the severity of LPS/VILI-induced lung injury was markedly reduced in mice with global nmMLCK deletion reflected by reductions in histologic inflammatory lung injury, BAL PMN counts, mitogen-activated protein kinase, and NF-kB pathway activation in lung homogenates, plasma cytokine levels, and parameters of lung permeability (increased BAL protein, tissue albumin levels, EBD lung extravasation). In contrast, mice with restricted overexpression of nmMLCK in EC (nmMylk -/-/ec-tg+) showed significant persistence of LPS/VILI-induced lung injury severity compared to WT mice. In conclusion, these studies strongly endorse the role of EC nmMLCK in driving the severity of preclinical inflammatory lung injury. Precise targeting of EC nmMLCK may represent an attractive therapeutic strategy to reduce lung inflammation and both lung and systemic vascular permeability.

6.
Am J Respir Cell Mol Biol ; 66(5): 497-509, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35167418

RESUMO

The paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and Nampt+/- heterozygous C57BL6 mice and nonhuman primates (NHPs, Macaca mulatta) were exposed to a single WTLI dose (9.8 or 10.7 Gy for NHPs, 20 Gy for mice). WT mice received IgG1 (control) or an eNAMPT-neutralizing polyclonal or monoclonal antibody (mAb) intraperitoneally 4 hours after WTLI and weekly thereafter. At 8-12 weeks after WTLI, NAMPT expression was assessed by immunohistochemistry, biochemistry, and plasma biomarker studies. RILF severity was determined by BAL protein/cells, hematoxylin and eosin, and trichrome blue staining and soluble collagen assays. RNA sequencing and bioinformatic analyses identified differentially expressed lung tissue genes/pathways. NAMPT lung tissue expression was increased in both WTLI-exposed WT mice and NHPs. Nampt+/- mice and eNAMPT polyclonal antibody/mAb-treated mice exhibited significantly attenuated WTLI-mediated lung fibrosis with reduced: 1) NAMPT and trichrome blue staining; 2) dysregulated lung tissue expression of smooth muscle actin, p-SMAD2/p-SMAD1/5/9, TGF-ß, TSP1 (thrombospondin-1), NOX4, IL-1ß, and NRF2; 3) plasma eNAMPT and IL-1ß concentrations; and 4) soluble collagen. Multiple WTLI-induced dysregulated differentially expressed lung tissue genes/pathways with known tissue fibrosis involvement were each rectified in mice receiving eNAMPT mAbs.The eNAMPT/TLR4 inflammatory network is essentially involved in radiation pathobiology, with eNAMPT neutralization an effective therapeutic strategy to reduce RILF severity.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Alarminas/metabolismo , Animais , Anticorpos Monoclonais , Citocinas/metabolismo , Pulmão/patologia , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nicotinamida Fosforribosiltransferase/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Tórax , Receptor 4 Toll-Like/metabolismo
7.
Sci Rep ; 12(1): 696, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027578

RESUMO

Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.


Assuntos
Síndrome Torácica Aguda/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , NF-kappa B/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Anticorpos Neutralizantes/metabolismo , Biomarcadores/metabolismo , COVID-19/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , SARS-CoV-2/patogenicidade , Suínos
8.
Transl Res ; 239: 44-57, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34139379

RESUMO

Therapeutic strategies to prevent or reduce the severity of radiation pneumonitis are a serious unmet need. We evaluated extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a damage-associated molecular pattern protein (DAMP) and Toll-Like Receptor 4 (TLR4) ligand, as a therapeutic target in murine radiation pneumonitis. Radiation-induced murine and human NAMPT expression was assessed in vitro, in tissues (IHC, biochemistry, imaging), and in plasma. Wild type C57Bl6 mice (WT) and Nampt+/- heterozygous mice were exposed to 20Gy whole thoracic lung irradiation (WTLI) with or without weekly IP injection of IgG1 (control) or an eNAMPT-neutralizing polyclonal (pAb) or monoclonal antibody (mAb). BAL protein/cells and H&E staining were used to generate a WTLI severity score. Differentially-expressed genes (DEGs)/pathways were identified by RNA sequencing and bioinformatic analyses. Radiation exposure increases in vitro NAMPT expression in lung epithelium (NAMPT promoter activity) and NAMPT lung tissue expression in WTLI-exposed mice. Nampt+/- mice and eNAMPT pAb/mAb-treated mice exhibited significant histologic attenuation of WTLI-mediated lung injury with reduced levels of BAL protein and cells, and plasma levels of eNAMPT, IL-6,  and IL-1ß. Genomic and biochemical studies from WTLI-exposed lung tissues highlighted dysregulation of NFkB/cytokine and MAP kinase signaling pathways which were rectified by eNAMPT mAb treatment. The eNAMPT/TLR4 pathway is essentially involved in radiation pathobiology with eNAMPT neutralization an effective therapeutic strategy to reduce the severity of radiation pneumonitis.


Assuntos
Anticorpos Neutralizantes/farmacologia , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Pneumonite por Radiação/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Citocinas/sangue , Citocinas/genética , Citocinas/imunologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , NF-kappa B/metabolismo , Nicotinamida Fosforribosiltransferase/sangue , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/imunologia , Pneumonite por Radiação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
9.
Clin Sci (Lond) ; 135(7): 963-977, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33792658

RESUMO

RATIONALE: The myosin light chain kinase gene, MYLK, encodes three proteins via unique promoters, including the non-muscle isoform of myosin light chain kinase (nmMLCK), a cytoskeletal protein centrally involved in regulation of vascular integrity. As MYLK coding SNPs are associated with severe inflammatory disorders (asthma, acute respiratory distress syndrome (ARDS)), we explored clinically relevant inflammatory stimuli and promoter SNPs in nmMLCK promoter regulation. METHODS: Full-length or serially deleted MYLK luciferase reporter promoter activities were measured in human lung endothelial cells (ECs). SNP-containing non-muscle MYLK (nmMYLK) DNA fragments were generated and nmMYLK promoter binding by transcription factors (TFs) detected by protein-DNA electrophoretic mobility shift assay (EMSA). Promoter demethylation was evaluated by 5-aza-2'-deoxycytidine (5-Aza). A preclinical mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) was utilized for nmMLCK validation. RESULTS: Lung EC levels of nmMLCK were significantly increased in LPS-challenged mice and LPS, tumor necrosis factor-α (TNF-α), 18% cyclic stretch (CS) and 5-Aza each significantly up-regulated EC nmMYLK promoter activities. EC exposure to FG-4592, a prolyl hydroxylase inhibitor that increases hypoxia-inducible factor (HIF) expression, increased nmMYLK promoter activity, confirmed by HIF1α/HIF2α silencing. nmMYLK promoter deletion studies identified distal inhibitory and proximal enhancing promoter regions as well as mechanical stretch-, LPS- and TNFα-inducible regions. Insertion of ARDS-associated SNPs (rs2700408, rs11714297) significantly increased nmMYLK promoter activity via increased transcription binding (glial cells missing homolog 1 (GCM1) and intestine-specific homeobox (ISX), respectively). Finally, the MYLK rs78755744 SNP (-261G/A), residing within a nmMYLK CpG island, significantly attenuated 5-Aza-induced promoter activity. CONCLUSION: These findings indicate nmMYLK transcriptional regulation by clinically relevant inflammatory factors and ARDS-associated nmMYLK promoter variants are consistent with nmMLCK as a therapeutic target in severe inflammatory disorders.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Epigênese Genética , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Células Cultivadas , Decitabina , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Quinase de Cadeia Leve de Miosina/genética , Pneumonia , Polimorfismo de Nucleotídeo Único , Síndrome do Desconforto Respiratório/genética , Estresse Mecânico , Fator de Necrose Tumoral alfa
10.
Eur Respir J ; 57(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33243842

RESUMO

RATIONALE: The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS: Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS: Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS: These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Animais , Anticorpos Monoclonais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA