Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210070, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36374130

RESUMO

Effective restoration planning tools are needed to mitigate global carbon and biodiversity crises. Published spatial assessments of restoration potential are often at large scales or coarse resolutions inappropriate for local action. Using a Tanzanian case study, we introduce a systematic approach to inform landscape restoration planning, estimating spatial variation in cost-effectiveness, based on restoration method, logistics, biomass modelling and uncertainty mapping. We found potential for biomass recovery across 77.7% of a 53 000 km2 region, but with some natural spatial discontinuity in moist forest biomass, that was previously assigned to human causes. Most areas with biomass deficit (80.5%) were restorable through passive or assisted natural regeneration. However, cumulative biomass gains from planting outweighed initially high implementation costs meaning that, where applicable, this method yielded greater long-term returns on investment. Accounting for ecological, funding and other uncertainty, the top 25% consistently cost-effective sites were within protected areas and/or moderately degraded moist forest and savanna. Agro-ecological mosaics had high biomass deficit but little cost-effective restoration potential. Socio-economic research will be needed to inform action towards environmental and human development goals in these areas. Our results highlight value in long-term landscape restoration investments and separate treatment of savannas and forests. Furthermore, they contradict previously asserted low restoration potential in East Africa, emphasizing the importance of our regional approach for identifying restoration opportunities across the tropics. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Ecossistema , Árvores , Humanos , Biodiversidade , Florestas , Biomassa , Conservação dos Recursos Naturais/métodos
3.
Sci Total Environ ; 859(Pt 1): 159956, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36351499

RESUMO

Invasion of plant species with functional traits that influences the rhizosphere can have significant effects on soil organic matter (SOM) dynamics if the invasive species stimulates soil microbial communities with, for example, an enhanced supply of labile carbon and oxygen. We evaluated these effects along a Phragmites invasion chronosequence spanning over 40 years. Using a δ13C and δ15N enriched substrate, we separated SOM-derived and substrate-derived carbon (C) and nitrogen (N) mineralization in surface (top 15 cm), shallow (30-45 cm), and deep (65-80 cm) soils collected from established, newly invaded, and native plant communities. We found all soils were susceptible to SOM priming, but priming profiles differed between vegetation communities, being highest at the surface in native assemblage soils, whereas highest at depth under invasive plants. Changes in functional microbial community composition at depth in Phragmites soils, evidenced by an increase in relative fungal laccase abundance, explained the SOM priming in these deep invaded soils. Our results show that invasive Phragmites maintains a microbial community at depth able to degrade SOM faster than that under native vegetation, evidencing that plant species shifts can fundamentally change soil biogeochemistry, altering element cycling and decreasing SOM residence time. Furthermore, our experimental design allowed to quantify real-time SOM-C and SOM-N gross mineralization, resulting in a new model relating C and N mineralization in these wetland soils and providing new insights on how SOM decomposition impacts N availability and cycling across wetland N pools.


Assuntos
Microbiota , Solo , Solo/química , Microbiologia do Solo , Carbono/metabolismo , Áreas Alagadas , Poaceae/metabolismo , Nitrogênio , Plantas/metabolismo
4.
Sci Total Environ ; 847: 157555, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878850

RESUMO

Plastic pollution is now present in all areas of our planet, including its last wilderness, Antarctica, and the plastic crisis has further escalated because of COVID-19. The pandemic has caused a significant increase in the global consumption of single-use protective items such as masks and gloves. These and other plastic items add to the suite of plastic pollution issues, from entanglement of wildlife to microplastic bioaccumulation. Given plastics are a major threat facing humans and wildlife, swift action to reduce plastic pollution is urgently needed. Solutions to plastic pollution are within reach. With collective, impactful action we will ensure a better future for our planet and ourselves. Here, we propose several measures for decision-makers to implement to achieve a solution and tackle plastic pollution as a united, global community.


Assuntos
COVID-19 , Plásticos , COVID-19/epidemiologia , Poluição Ambiental , Humanos , Microplásticos , Pandemias
5.
Viruses ; 13(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668729

RESUMO

Plant viruses are obligate parasites that need to usurp plant cell metabolism in order to infect their hosts. Imaging techniques have been used for quite a long time to study plant virus-host interactions, making it possible to have major advances in the knowledge of plant virus infection cycles. The imaging techniques used to study plant-virus interactions have included light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopies. Here, we review the use of these techniques in plant virology, illustrating recent advances in the area with examples from plant virus replication and virus plant-to-plant vertical transmission processes.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/genética , Plantas/virologia , Replicação Viral/genética , Animais , Interações entre Hospedeiro e Microrganismos/genética , Transmissão Vertical de Doenças Infecciosas , Microscopia Confocal/métodos
6.
Carbon Balance Manag ; 13(1): 22, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30460418

RESUMO

BACKGROUND: Forest landscape restoration (FLR) has been adopted by governments and practitioners across the globe to mitigate and adapt to climate change and restore ecological functions across degraded landscapes. However, the extent to which these activities capture CO2 with associated climate mitigation impacts are poorly known, especially in geographies where data on biomass growth of restored forests are limited or do not exist. To fill this gap, we developed biomass accumulation rates for a set of FLR activities (natural regeneration, planted forests and woodlots, agroforestry, and mangrove restoration) across the globe and global CO2 removal rates with corresponding confidence intervals, grouped by FLR activity and region/climate. RESULTS: Planted forests and woodlots were found to have the highest CO2 removal rates, ranging from 4.5 to 40.7 t CO2 ha-1 year-1 during the first 20 years of growth. Mangrove tree restoration was the second most efficient FLR at removing CO2, with growth rates up to 23.1 t CO2 ha-1 year-1 the first 20 years post restoration. Natural regeneration removal rates were 9.1-18.8 t CO2 ha-1 year-1 during the first 20 years of forest regeneration, followed by agroforestry, the FLR category with the lowest and regionally broad removal rates (10.8-15.6 t CO2 ha-1 year-1). Biomass growth data was most abundant and widely distributed across the world for planted forests and natural regeneration, representing 45% and 32% of all the data points assessed, respectively. Agroforestry studies, were only found in Africa, Asia, and the Latin America and Caribbean regions. CONCLUSION: This study represents the most comprehensive review of published literature on tree growth and CO2 removals to date, which we operationalized by constructing removal rates for specific FLR activities across the globe. These rates can easily be applied by practitioners and decision-makers seeking to better understand the positive climate mitigation impacts of existing or planned FLR actions, or by countries making restoration pledges under the Bonn Challenge Commitments or fulfilling Nationally Determined Contributions to the UNFCCC, thereby helping boost FLR efforts world-wide.

7.
Nat Clim Chang ; 8(12): 1109-1112, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-32601525

RESUMO

The IPCC 2013 Wetlands Supplement provided new guidance for countries on inclusion of wetlands in their National GHG Inventories. The United States has responded by including managed coastal wetlands for the first time in its 2017 GHG Inventory report along with an updated time series in the most recent 2018 submission and plans to update the time series on an annual basis as part of its yearly submission to the United Nations Framework Convention on Climate Change (UNFCCC). The United States followed IPCC Good Practice Guidance when reporting sources and sinks associated with managed coastal wetlands. Here we show that intact vegetated coastal wetlands are a net sink for GHGs. Despite robust regulation that has protected substantial stocks of carbon, the United States continues to lose coastal wetlands to development and the largest loss of wetlands to open water occurs around the Mississippi Delta due mostly to upstream changes in hydrology and sediment delivery, and oil and gas extraction. These processes create GHG emissions. By applying comprehensive Inventory reporting, scientists in the United States have identified opportunities for reducing GHG emissions through restoration of coastal wetlands that also provide many important societal co-benefits.

8.
Glob Chang Biol ; 23(5): 2104-2116, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27779794

RESUMO

Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real-time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant-derived, surface SOM-derived (0-40 cm, active root zone of native marsh vegetation), and deep SOM-derived mineralization (40-80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep-buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long-term C sink.


Assuntos
Sequestro de Carbono , Poaceae/química , Áreas Alagadas , Carbono , Mudança Climática , América do Norte , Solo
9.
J Environ Qual ; 42(4): 1236-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24216375

RESUMO

Wetlands have the ability to accumulate significant amounts of carbon (C) and thus could provide an effective approach to mitigate greenhouse gas accumulation in the atmosphere. Wetland hydrology, age, and management can affect primary productivity, decomposition, and ultimately C sequestration in riverine wetlands, but these aspects of wetland biogeochemistry have not been adequately investigated, especially in created wetlands. In this study we investigate the ability of created freshwater wetlands to sequester C by determining the sediment accretion and soil C accumulation of two 15-yr-old created wetlands in central Ohio-one planted and one naturally colonized. We measured the amount of sediment and soil C accumulated over the parent material and found that these created wetlands accumulated an average of 242 g C m yr, 70% more than a similar natural wetland in the region and 26% more than the rate estimated for these same wetlands 5 yr before this study. The C sequestration of the naturally colonized wetland was 22% higher than that of the planted wetland (267 ± 17 vs. 219 ± 15 g C m yr, respectively). Soil C accrual accounted for 66% of the aboveground net primary productivity on average. Open water communities had the highest C accumulation rates in both wetlands. This study shows that created wetlands can be natural, cost-effective tools to sequester C to mitigate the effect of greenhouse gas emissions.


Assuntos
Sequestro de Carbono , Áreas Alagadas , Carbono , Efeito Estufa , Meio-Oeste dos Estados Unidos , Solo/química
10.
Mol Plant Pathol ; 9(4): 447-61, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18705860

RESUMO

The translocation of Melon necrotic spot virus (MNSV) within tissues of inoculated and systemically infected Cucumis melo L. 'Galia' was studied by tissue-printing and in situ hybridization techniques. The results were compatible with the phloem vascular components being used to spread MNSV systemically by the same assimilate transport route that runs from source to sink organs. Virus RNAs were shown to move from the inoculated cotyledon toward the hypocotyl and root system via the external phloem, whereas the upward spread through the stem to the young tissues took place via the internal phloem. Virus infection was absent from non-inoculated source tissues as well as from both shoot and root apical meristems, but active sink tissues such as the young leaves and root system were highly infected. Finally, our results suggest that the MNSV invasion of roots is due to virus replication although a destination-selective process is probably necessary to explain the high levels of virus accumulation in roots. This efficient invasion of the root system is discussed in terms of natural transmission of MNSV by the soil-borne fungal vector.


Assuntos
Carmovirus/fisiologia , Cucurbitaceae/virologia , Floema/virologia , Carmovirus/genética , Carmovirus/metabolismo , Cucurbitaceae/citologia , Cucurbitaceae/metabolismo , Interações Hospedeiro-Patógeno , Hibridização In Situ , Floema/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/virologia , Transporte de RNA , RNA Viral/genética , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA