Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transpl Int ; 37: 12994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070247

RESUMO

The aim of this study was to provide insight into high-energy phosphate compound concentration dynamics under realistic clinical cold-storage conditions using the Celsior solution in seven heart grafts discarded from transplantation. The hearts of seven local donors (three males, four females, age 37 ± 17 years, height 175 ± 5 cm, weight 75 ± 9 kg) initially considered for transplantation and eventually discarded were submitted to a Magnetic Resonance Spectroscopy observation in a clinical Magnetic Resonance Imaging scanner over at least 9 h. The grafts remained in their sterile container at 4°C during the entire examination. Hence, Phosphocreatine (PCr), adenosine triphosphate (ATP), inorganic phosphate (Pi) and intracellular pH were recorded non-destructively at a 30-minute interval. With the ischemic time Ti, the concentration ratios decreased at PCr/ATP = 1.68-0.0028·Tis, Pi/ATP = 1.38 + 0.0029·Tis, and intracellular pH at 7.43-0.0012·Tis. ATP concentration remained stable for at least 9 h and did not decrease as long as phosphocreatine was detectable. Acidosis remained moderate. In addition to the standard parameters assessed at the time of retrieval, Magnetic Resonance Spectroscopy can provide an assesment of the metabolic status of heart grafts before transplantation. These results show how HEPC metabolites deplete during cold storage. Although many parameters determine graft quality during cold storage, the dynamics of HEPC and intracellular pH may be helpful in the development of strategies aiming at extending the ischemic time.


Assuntos
Trifosfato de Adenosina , Dissacarídeos , Eletrólitos , Glutamatos , Glutationa , Transplante de Coração , Histidina , Manitol , Soluções para Preservação de Órgãos , Preservação de Órgãos , Fosfatos , Humanos , Feminino , Masculino , Trifosfato de Adenosina/metabolismo , Adulto , Pessoa de Meia-Idade , Preservação de Órgãos/métodos , Espectroscopia de Ressonância Magnética , Concentração de Íons de Hidrogênio , Fosfocreatina/metabolismo , Adulto Jovem , Criopreservação , Imageamento por Ressonância Magnética
2.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865273

RESUMO

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Assuntos
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animais , Nanomedicina Teranóstica/métodos , Humanos , Camundongos , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Imagem por Ressonância Magnética de Flúor-19/métodos , Camundongos Nus , Meios de Contraste/química
3.
J Cardiovasc Magn Reson ; 26(2): 101048, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878970

RESUMO

BACKGROUND: Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification. METHODS: Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients. RESULTS: In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001). CONCLUSIONS: Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.

5.
Neuroimage ; 290: 120576, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490583

RESUMO

To elucidate how time of day, sex, and age affect functional connectivity (FC) in mice, we aimed to examine whether the mouse functional connectome varied with the day/night cycle and whether it depended on sex and age. We explored C57Bl6/J mice (6♀ and 6♂) at mature age (5 ± 1 months) and middle-age (14 ± 1 months). Each mouse underwent Blood Oxygen-Level-Dependent (BOLD) resting-state functional MRI (rs-fMRI) on a 7T scanner at four different times of the day, two under the light condition and two under the dark condition. Data processing consisted of group independent component analysis (ICA) and region-level analysis using resting-state networks (RSNs) derived from literature. Linear mixed-effect models (LMEM) were used to assess the effects of sex, lighting condition and their interactions for each RSN obtained with group-ICA (RSNs-GICA) and six bilateral RSNs adapted from literature (RSNs-LIT). Our study highlighted new RSNs in mice related to day/night alternation in addition to other networks already reported in the literature. In mature mice, we found sex-related differences in brain activation only in one RSNs-GICA comprising the cortical, hippocampal, midbrain and cerebellar regions of the right hemisphere. In males, brain activity was significantly higher in the left hippocampus, the retrosplenial cortex, the superior colliculus, and the cerebellum regardless of lighting condition; consistent with the role of these structures in memory formation and integration, sleep, and sex-differences in memory processing. Experimental constraints limited the analysis to the impact of light/dark cycle on the RSNs for middle-aged females. We detected significant activation in the pineal gland during the dark condition, a finding in line with the nocturnal activity of this gland. For the analysis of RSNs-LIT, new variables "sexage" (sex and age combined) and "edges" (pairs of RSNs) were introduced. FC was calculated as the Pearson correlation between two RSNs. LMEM revealed no effect of sexage or lighting condition. The FC depended on the edges, but there were no interaction effects between sexage, lighting condition and edges. Interaction effects were detected between i) sex and lighting condition, with higher FC in males under the dark condition, ii) sexage and edges with higher FC in male brain regions related to vision, memory, and motor action. We conclude that time of day and sex should be taken into account when designing, analyzing, and interpreting functional imaging studies in rodents.


Assuntos
Conectoma , Masculino , Feminino , Animais , Camundongos , Conectoma/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Giro do Cíngulo , Sono , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA