Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10925, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740826

RESUMO

Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood. 26 patients with IBD were included in the prospective clinical study. Serum samples were collected before and 30 min after diagnostic transabdominal ultrasound. Differential miRNA expression was analyzed by sequencing. Candidate inducible EV-miRNAs were functionally assessed in vitro by transfection of miRNA mimics and qPCR of predicted target genes. Serum EV-miRNA concentration at baseline correlated with disease severity, as determined by clinical activity scores and sonographic findings. Three miRNAs (miR-942-5p, mir-5588, mir-3195) were significantly induced by sonography. Among the significantly regulated EV-miRNAs, miR-942-5p was strongly induced in higher grade intestinal inflammation and correlated with clinical activity in Crohn's disease. Prediction of target regulation and transfection of miRNA mimics inferred a role of this EV-miRNA in regulating barrier function in inflammation. Induction of mir-5588 and mir-3195 did not correlate with inflammation grade. This proof-of-concept trial highlights the principle of induced molecular shifts in EVs from inflamed tissue through transabdominal ultrasound. These inducible EVs and their molecular cargo like miRNA could become novel biomarkers for intestinal inflammation in IBD.


Assuntos
Vesículas Extracelulares , Doenças Inflamatórias Intestinais , MicroRNAs , Ultrassonografia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Masculino , Feminino , Adulto , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/patologia , Pessoa de Meia-Idade , Ultrassonografia/métodos , Estudos Prospectivos , Biomarcadores/metabolismo
2.
Genome Biol ; 25(1): 81, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553769

RESUMO

The use of single-cell technologies for clinical applications requires disconnecting sampling from downstream processing steps. Early sample preservation can further increase robustness and reproducibility by avoiding artifacts introduced during specimen handling. We present FixNCut, a methodology for the reversible fixation of tissue followed by dissociation that overcomes current limitations. We applied FixNCut to human and mouse tissues to demonstrate the preservation of RNA integrity, sequencing library complexity, and cellular composition, while diminishing stress-related artifacts. Besides single-cell RNA sequencing, FixNCut is compatible with multiple single-cell and spatial technologies, making it a versatile tool for robust and flexible study designs.


Assuntos
Genômica , RNA , Humanos , Animais , Camundongos , Fixação de Tecidos/métodos , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , RNA/genética , Genômica/métodos , Análise de Célula Única/métodos
3.
Cell Death Dis ; 14(8): 562, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626062

RESUMO

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Glomerular hyperfiltration and albuminuria subject the proximal tubule (PT) to a subsequent elevation of workload, growth, and hypoxia. Hypoxia plays an ambiguous role in the development and progression of DKD and shall be clarified in our study. PT-von-Hippel-Lindau (Vhl)-deleted mouse model in combination with streptozotocin (STZ)-induced type I diabetes mellitus (DM) was phenotyped. In contrary to PT-Vhl-deleted STZ-induced type 1 DM mice, proteinuria and glomerular hyperfiltration occurred in diabetic control mice the latter due to higher nitric oxide synthase 1 and sodium and glucose transporter expression. PT Vhl deletion and DKD share common alterations in gene expression profiles, including glomerular and tubular morphology, and tubular transport and metabolism. Compared to diabetic control mice, the most significantly altered in PT Vhl-deleted STZ-induced type 1 DM mice were Ldc-1, regulating cellular oxygen consumption rate, and Zbtb16, inhibiting autophagy. Alignment of altered genes in heat maps uncovered that Vhl deletion prior to STZ-induced DM preconditioned the kidney against DKD. HIF-1α stabilization leading to histone modification and chromatin remodeling resets most genes altered upon DKD towards the control level. These data demonstrate that PT HIF-1α stabilization is a hallmark of early DKD and that targeting hypoxia prior to the onset of type 1 DM normalizes renal cell homeostasis and prevents DKD development.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/genética , Rim , Túbulos Renais Proximais , Glomérulos Renais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética
4.
5.
Nat Commun ; 13(1): 6266, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271073

RESUMO

Genetic variants in the DNA methyltransferase 3 A (DNMT3A) locus have been associated with inflammatory bowel disease (IBD). DNMT3A is part of the epigenetic machinery physiologically involved in DNA methylation. We show that DNMT3A plays a critical role in maintaining intestinal homeostasis and gut barrier function. DNMT3A expression is downregulated in intestinal epithelial cells from IBD patients and upon tumor necrosis factor treatment in murine intestinal organoids. Ablation of DNMT3A in Caco-2 cells results in global DNA hypomethylation, which is linked to impaired regenerative capacity, transepithelial resistance and intercellular junction formation. Genetic deletion of Dnmt3a in intestinal epithelial cells (Dnmt3aΔIEC) in mice confirms the phenotype of an altered epithelial ultrastructure with shortened apical-junctional complexes, reduced Goblet cell numbers and increased intestinal permeability in the colon in vivo. Dnmt3aΔIEC mice suffer from increased susceptibility to experimental colitis, characterized by reduced epithelial regeneration. These data demonstrate a critical role for DNMT3A in orchestrating intestinal epithelial homeostasis and response to tissue damage and suggest an involvement of impaired epithelial DNMT3A function in the etiology of IBD.


Assuntos
DNA Metiltransferase 3A , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células CACO-2 , Mucosa Intestinal/metabolismo , Colo/patologia , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Fatores de Necrose Tumoral/metabolismo , DNA/metabolismo
6.
iScience ; 24(10): 103092, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622147

RESUMO

The gut microbiota affects remote organ functions but its impact on organotypic endothelial cell (EC) transcriptomes remains unexplored. The liver endothelium encounters microbiota-derived signals and metabolites via the portal circulation. To pinpoint how gut commensals affect the hepatic sinusoidal endothelium, a magnetic cell sorting protocol, combined with fluorescence-activated cell sorting, was used to isolate hepatic sinusoidal ECs from germ-free (GF) and conventionally raised (CONV-R) mice for transcriptome analysis by RNA sequencing. This resulted in a comprehensive map of microbiota-regulated hepatic EC-specific transcriptome profiles. Gene Ontology analysis revealed that several functional processes in the hepatic endothelium were affected. The absence of microbiota influenced the expression of genes involved in cholesterol flux and angiogenesis. Specifically, genes functioning in hepatic endothelial sphingosine metabolism and the sphingosine-1-phosphate pathway showed drastically increased expression in the GF state. Our analyses reveal a prominent role for the microbiota in shaping the transcriptional landscape of the hepatic endothelium.

7.
Nat Commun ; 12(1): 4222, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244514

RESUMO

The evolutionary transition towards multicellular life often involves growth in groups of undifferentiated cells followed by differentiation into soma and germ-like cells. Theory predicts that germ soma differentiation is facilitated by a convex trade-off between survival and reproduction. However, this has never been tested and these transitions remain poorly understood at the ecological and genetic level. Here, we study the evolution of cell groups in ten isogenic lines of the unicellular green algae Chlamydomonas reinhardtii with prolonged exposure to a rotifer predator. We confirm that growth in cell groups is heritable and characterized by a convex trade-off curve between reproduction and survival. Identical mutations evolve in all cell group isolates; these are linked to survival and reducing associated cell costs. Overall, we show that just 500 generations of predator selection were sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome.


Assuntos
Evolução Biológica , Chlamydomonas reinhardtii/fisiologia , Modelos Biológicos , Animais , Sobrevivência Celular/fisiologia , Comportamento Predatório , Rotíferos/fisiologia
8.
Nature ; 594(7862): 265-270, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040261

RESUMO

Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning-a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.


Assuntos
Blockchain , Tomada de Decisão Clínica/métodos , Confidencialidade , Conjuntos de Dados como Assunto , Aprendizado de Máquina , Medicina de Precisão/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Surtos de Doenças , Feminino , Humanos , Leucemia/diagnóstico , Leucemia/patologia , Leucócitos/patologia , Pneumopatias/diagnóstico , Aprendizado de Máquina/tendências , Masculino , Software , Tuberculose/diagnóstico
9.
Gastroenterology ; 160(7): 2354-2366.e11, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667488

RESUMO

BACKGROUND & AIMS: A large unmet therapeutic need exists in inflammatory bowel disease (IBD). Inhibition of interleukin (IL)-6 appears to be effective, but the therapeutic benefit of a complete IL6/IL6 receptor (IL6R) blockade is limited by profound immunosuppression. Evidence has emerged that chronic proinflammatory activity of IL6 is mainly mediated by trans-signaling via a complex of IL6 bound to soluble IL6R engaging the gp130 co-receptor without the need for membrane-bound IL6R. We have developed a decoy protein, sgp130Fc, that exclusively blocks IL6 proinflammatory trans-signaling and has shown efficacy in preclinical models of IBD, without signs of immunosuppression. METHODS: We present a 12-week, open-label, prospective phase 2a trial (FUTURE) in 16 patients with active IBD treated with the trans-signaling inhibitor olamkicept (sgp130Fc) to assess the molecular mechanisms, safety, and effectiveness of IL6 trans-signaling blockade in vivo. We performed in-depth molecular profiling at various timepoints before and after therapy induction to identify the mechanism of action of olamkicept. RESULTS: Olamkicept was well tolerated and induced clinical response in 44% and clinical remission in 19% of patients. Clinical effectiveness coincided with target inhibition (reduction of phosphorylated STAT3) and marked transcriptional changes in the inflamed mucosa. An olamkicept-specific transcriptional signature, distinguishable from remission signatures of anti-tumor necrosis factor (infliximab) or anti-integrin (vedolizumab) therapies was identified. CONCLUSIONS: Our data suggest that blockade of IL6 trans-signaling holds great promise for the therapy of IBD and should undergo full clinical development as a new immunoregulatory therapy for IBD. (EudraCT no., Nu 2016-000205-36).


Assuntos
Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Receptores de Interleucina-6/metabolismo , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
10.
Front Immunol ; 11: 604464, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324421

RESUMO

Immunophenotyping on the molecular and cellular level is a central aspect for characterization of patients with inflammatory diseases, both to better understand disease etiopathogenesis and based on this to develop diagnostic and prognostic biomarkers which allow patient stratification and tailor-made treatment strategies. Technology-driven developments have considerably expanded the range of analysis tools. Especially the analysis of adaptive immune responses, often regarded as central though mostly poorly characterized disease drivers, is a major focus of personalized medicine. The identification of the disease-relevant antigens and characterization of corresponding antigen-specific lymphocytes in individual patients benefits significantly from recent developments in cytometry by sequencing and proteomics. The aim of this workshop was to identify the important developments for state-of-the-art immunophenotyping for clinical application and precision medicine. We focused here on recent key developments in analysis of antigen-specific lymphocytes, sequencing, and proteomics approaches, their relevance in precision medicine and the discussion of the major challenges and opportunities for the future.


Assuntos
Imunidade Adaptativa , Linfócitos B/imunologia , Inflamação/imunologia , Linfócitos T/imunologia , Animais , Linfócitos B/metabolismo , Congressos como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Inflamação/genética , Inflamação/metabolismo , Fenótipo , Proteômica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo
11.
Immunity ; 53(6): 1296-1314.e9, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296687

RESUMO

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.


Assuntos
COVID-19/metabolismo , Células Eritroides/patologia , Megacariócitos/fisiologia , Plasmócitos/fisiologia , SARS-CoV-2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Circulação Sanguínea , COVID-19/imunologia , Células Cultivadas , Estudos de Coortes , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Análise de Sequência de RNA , Índice de Gravidade de Doença , Análise de Célula Única
12.
Gastroenterology ; 159(4): 1357-1374.e10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673694

RESUMO

BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs. METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease (CD) and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time polymerase chain reaction and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins. RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation on tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and tumor necrosis factor (TNF) expression in these organoids on induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 messenger RNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF. CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Íleo/metabolismo , Íleo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Animais , Autofagia , Células CACO-2 , Técnicas de Cultura de Células , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA