Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 333: 211-221, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841740

RESUMO

Bothrops (lance-head pit vipers) venoms are rich in weaponised metalloprotease enzymes (SVMP). These toxic enzymes are structurally diverse and functionally versatile. Potent coagulotoxicity is particularly important for prey capture (via stroke-induction) and relevant to human clinical cases (due to consumption of clotting factors including the critical depletion of fibrinogen). In this study, three distinct isoforms of P-III class SVMPs (IC, IIB and IIC), isolated from Bothrops neuwiedi venom, were evaluated for their differential capacities to affect hemostasis of prey and human plasma. Furthermore, we tested the relative antivenom neutralisation of effects upon human plasma. The toxic enzymes displayed differential procoagulant potency between plasma types, and clinically relevant antivenom efficacy variations were observed. Of particular importance was the confirmation the antivenom performed better against prothrombin activating toxins than Factor X activating toxins, which is likely due to the greater prevalence of the former in the immunising venoms used for antivenom production. This is clinically relevant as the enzymes displayed differential potency in this regard, with one (IC) in particular being extremely potent in activating Factor X and thus was correspondingly poorly neutralised. This study broadens the current understanding about the adaptive role of the SVMPs, as well as highlights how the functional diversity of SVMP isoforms can influence clinical outcomes. Key Contribution: Our findings shed light upon the hemorrhagic and coagulotoxic effects of three SVMPs of the P-III class, as well as the coagulotoxic effects of SVMPs on human, avian and amphibian plasmas. Antivenom neutralised prothrombin-activating isoforms better than Factor X activating isoforms.


Assuntos
Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Hemorragia/prevenção & controle , Metaloproteases/toxicidade , Venenos de Serpentes/enzimologia , Animais , Bothrops , Feminino , Hemorragia/sangue , Hemorragia/induzido quimicamente , Hemorragia/fisiopatologia , Humanos , Microscopia Intravital , Masculino , Metaloproteases/química , Camundongos , Microcirculação/efeitos dos fármacos , Microvasos/diagnóstico por imagem , Microvasos/efeitos dos fármacos , Microvasos/patologia , Isoformas de Proteínas
2.
J Proteomics ; 159: 32-46, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28274896

RESUMO

Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA2s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA2s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats. BIOLOGICAL SIGNIFICANCE: In this report, we compared isoforms present in venoms from snakes collected at different Amazonian habitats. By means of a species venom gland transcriptome and the in silico functional prediction of each isoform, we were able to predict the principal venom activities in vitro and in animal models. We also showed remarkable differences in the venom pools from snakes collected at the floodplain (várzea habitat) compared to other habitats. Not only was this venom less hemorrhagic and more procoagulant, when compared to the venom pools from the other three habitats studied, but also this enhanced procoagulant activity was not efficiently neutralized by Bothrops antivenom. Thus, using a functional proteomic approach, we highlighted intraspecific differences in B. atrox venom that could impact both in the ecology of snakes but also in the treatment of snake bite patients in the region.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/biossíntese , Ecossistema , Glândulas Exócrinas/metabolismo , Proteômica , Animais , Bothrops/genética , Brasil , Venenos de Crotalídeos/genética , Transcriptoma/fisiologia
3.
PLoS One ; 9(10): e109651, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313513

RESUMO

Snake venom metalloproteinases (SVMPs) are major components in most viperid venoms that induce disturbances in the hemostatic system and tissues of animals envenomated by snakes. These disturbances are involved in human pathology of snake bites and appear to be essential for the capture and digestion of snake's prey and avoidance of predators. SVMPs are a versatile family of venom toxins acting on different hemostatic targets which are present in venoms in distinct structural forms. However, the reason why a large number of different SVMPs are expressed in some venoms is still unclear. In this study, we evaluated the interference of five isolated SVMPs in blood coagulation of humans, birds and small rodents. P-III class SVMPs (fractions Ic, IIb and IIc) possess gelatinolytic and hemorrhagic activities, and, of these, two also show fibrinolytic activity. P-I class SVMPs (fractions IVa and IVb) are only fibrinolytic. P-III class SVMPs reduced clotting time of human plasma. Fraction IIc was characterized as prothrombin activator and fraction Ic as factor X activator. In the absence of Ca2+, a firm clot was observed in chicken blood samples with fractions Ic, IIb and partially with fraction IIc. In contrast, without Ca2+, only fraction IIc was able to induce a firm clot in rat blood. In conclusion, functionally distinct forms of SVMPs were found in B. neuwiedi venom that affect distinct mechanisms in the coagulation system of humans, birds and small rodents. Distinct SVMPs appear to be more specialized to rat or chicken blood, strengthening the current hypothesis that toxin diversity enhances the possibilities of the snakes for hunting different prey or evading different predators. This functional diversity also impacts the complexity of human envenoming since different hemostatic mechanisms will be targeted by SVMPs accounting for the complexity of the response of humans to venoms.


Assuntos
Venenos de Crotalídeos/enzimologia , Hemostáticos/química , Metaloproteases/química , Proteínas de Répteis/química , Adaptação Biológica , Sequência de Aminoácidos , Animais , Bothrops , Galinhas , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacologia , Fator X/química , Feminino , Hemostáticos/isolamento & purificação , Hemostáticos/farmacologia , Humanos , Masculino , Metaloproteases/isolamento & purificação , Metaloproteases/farmacologia , Camundongos , Proteólise , Protrombina/química , Ratos , Proteínas de Répteis/isolamento & purificação , Proteínas de Répteis/farmacologia , Mordeduras de Serpentes
4.
PLoS Negl Trop Dis ; 7(9): e2442, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24069493

RESUMO

In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB--soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted.


Assuntos
Antivenenos/metabolismo , Bothrops/classificação , Bothrops/genética , Filogenia , Venenos de Serpentes/análise , Venenos de Serpentes/toxicidade , Animais , Antivenenos/imunologia , Cromatografia , Reações Cruzadas , Feminino , Humanos , América Latina , Masculino , Espectrometria de Massas , Camundongos , Testes de Neutralização , Venenos de Serpentes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA