Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766097

RESUMO

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

2.
Nat Commun ; 13(1): 5236, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068229

RESUMO

SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por HIV/prevenção & controle , Humanos , Macaca mulatta , Polissacarídeos
3.
Immunity ; 55(11): 2149-2167.e9, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36179689

RESUMO

Broadly neutralizing antibodies (bnAbs) to the HIV envelope (Env) V2-apex region are important leads for HIV vaccine design. Most V2-apex bnAbs engage Env with an uncommonly long heavy-chain complementarity-determining region 3 (HCDR3), suggesting that the rarity of bnAb precursors poses a challenge for vaccine priming. We created precursor sequence definitions for V2-apex HCDR3-dependent bnAbs and searched for related precursors in human antibody heavy-chain ultradeep sequencing data from 14 HIV-unexposed donors. We found potential precursors in a majority of donors for only two long-HCDR3 V2-apex bnAbs, PCT64 and PG9, identifying these bnAbs as priority vaccine targets. We then engineered ApexGT Env trimers that bound inferred germlines for PCT64 and PG9 and had higher affinities for bnAbs, determined cryo-EM structures of ApexGT trimers complexed with inferred-germline and bnAb forms of PCT64 and PG9, and developed an mRNA-encoded cell-surface ApexGT trimer. These methods and immunogens have promise to assist HIV vaccine development.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Produtos do Gene env do Vírus da Imunodeficiência Humana , Anticorpos Neutralizantes , Regiões Determinantes de Complementaridade/genética , Infecções por HIV/prevenção & controle
4.
Immunity ; 55(11): 2168-2186.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36179690

RESUMO

Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Camundongos , Humanos , Animais , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , RNA Mensageiro/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana
5.
Nat Commun ; 12(1): 4817, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376662

RESUMO

Engineered ectodomain trimer immunogens based on BG505 envelope glycoprotein are widely utilized as components of HIV vaccine development platforms. In this study, we used rhesus macaques to evaluate the immunogenicity of several stabilized BG505 SOSIP constructs both as free trimers and presented on a nanoparticle. We applied a cryoEM-based method for high-resolution mapping of polyclonal antibody responses elicited in immunized animals (cryoEMPEM). Mutational analysis coupled with neutralization assays were used to probe the neutralization potential at each epitope. We demonstrate that cryoEMPEM data can be used for rapid, high-resolution analysis of polyclonal antibody responses without the need for monoclonal antibody isolation. This approach allowed to resolve structurally distinct classes of antibodies that bind overlapping sites. In addition to comprehensive mapping of commonly targeted neutralizing and non-neutralizing epitopes in BG505 SOSIP immunogens, our analysis revealed that epitopes comprising engineered stabilizing mutations and of partially occupied glycosylation sites can be immunogenic.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Microscopia Crioeletrônica/métodos , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicosilação , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/ultraestrutura , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Macaca mulatta , Modelos Moleculares , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura
6.
iScience ; 23(12): 101836, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33319171

RESUMO

Dense surface glycosylation on the HIV-1 envelope (Env) protein acts as a shield from the adaptive immune system. However, the molecular complexity and flexibility of glycans make experimental studies a challenge. Here we have integrated high-throughput atomistic modeling of fully glycosylated HIV-1 Env with graph theory to capture immunologically important features of the shield topology. This is the first complete all-atom model of HIV-1 Env SOSIP glycan shield that includes both oligomannose and complex glycans, providing physiologically relevant insights of the glycan shield. This integrated approach including quantitative comparison with cryo-electron microscopy data provides hitherto unexplored details of the native shield architecture and its difference from the high-mannose glycoform. We have also derived a measure to quantify the shielding effect over the antigenic protein surface that defines regions of relative vulnerability and resilience of the shield and can be harnessed for rational immunogen design.

7.
Proc Natl Acad Sci U S A ; 117(45): 28014-28025, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093196

RESUMO

The dense array of N-linked glycans on the HIV-1 envelope glycoprotein (Env), known as the "glycan shield," is a key determinant of immunogenicity, yet intrinsic heterogeneity confounds typical structure-function analysis. Here, we present an integrated approach of single-particle electron cryomicroscopy (cryo-EM), computational modeling, and site-specific mass spectrometry (MS) to probe glycan shield structure and behavior at multiple levels. We found that dynamics lead to an extensive network of interglycan interactions that drive the formation of higher-order structure within the glycan shield. This structure defines diffuse boundaries between buried and exposed protein surface and creates a mapping of potentially immunogenic sites on Env. Analysis of Env expressed in different cell lines revealed how cryo-EM can detect subtle changes in glycan occupancy, composition, and dynamics that impact glycan shield structure and epitope accessibility. Importantly, this identified unforeseen changes in the glycan shield of Env obtained from expression in the same cell line used for vaccine production. Finally, by capturing the enzymatic deglycosylation of Env in a time-resolved manner, we found that highly connected glycan clusters are resistant to digestion and help stabilize the prefusion trimer, suggesting the glycan shield may function beyond immune evasion.


Assuntos
HIV-1/imunologia , Polissacarídeos/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Simulação por Computador , Microscopia Crioeletrônica/métodos , Epitopos/química , Glicosilação , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Soropositividade para HIV , HIV-1/metabolismo , Humanos , Evasão da Resposta Imune/imunologia , Espectrometria de Massas/métodos , Modelos Moleculares , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
8.
PLoS Pathog ; 16(8): e1008665, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780770

RESUMO

Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Computational design of protein nanoparticles with differing sizes and geometries enables combination with antigens of choice to test novel multimerization concepts in immunization strategies where the goal is to improve the induction and maturation of neutralizing antibody lineages. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to an underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. When the immunogenicity of ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle or as soluble proteins were compared in rabbits, the two immunogens elicited similar serum antibody binding titers against the trimer component. Neutralizing antibody titers were slightly elevated in the animals given the nanoparticle immunogen and were initially more focused to the trimer apex. Altogether, our findings indicate that tetrahedral nanoparticles can be successfully applied for presentation of HIV Env trimer immunogens; however, the optimal implementation to different immunization strategies remains to be determined.


Assuntos
Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Nanopartículas/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Epitopos/imunologia , Feminino , Infecções por HIV/virologia , Humanos , Imunização , Nanopartículas/administração & dosagem , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
9.
Sci Adv ; 6(22): eaba0468, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32518821

RESUMO

Potent broadly neutralizing antibodies (bnAbs) to HIV have been very challenging to elicit by vaccination in wild-type animals. Here, by x-ray crystallography, cryo-electron microscopy, and site-directed mutagenesis, we structurally and functionally elucidate the mode of binding of a potent bnAb (NC-Cow1) elicited in cows by immunization with the HIV envelope (Env) trimer BG505 SOSIP.664. The exceptionally long (60 residues) third complementarity-determining region of the heavy chain (CDR H3) of NC-Cow1 forms a mini domain (knob) on an extended stalk that navigates through the dense glycan shield on Env to target a small footprint on the gp120 CD4 receptor binding site with no contact of the other CDRs to the rest of the Env trimer. These findings illustrate, in molecular detail, how an unusual vaccine-induced cow bnAb to HIV Env can neutralize with high potency and breadth.


Assuntos
Infecções por HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Bovinos , Microscopia Crioeletrônica , Feminino , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/prevenção & controle
10.
Nat Commun ; 11(1): 2688, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461612

RESUMO

Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) are zoonotic pathogens with high fatality rates and pandemic potential. Vaccine development focuses on the principal target of the neutralizing humoral immune response, the spike (S) glycoprotein. Coronavirus S proteins are extensively glycosylated, encoding around 66-87 N-linked glycosylation sites per trimeric spike. Here, we reveal a specific area of high glycan density on MERS S that results in the formation of oligomannose-type glycan clusters, which were absent on SARS and HKU1 CoVs. We provide a comparison of the global glycan density of coronavirus spikes with other viral proteins including HIV-1 envelope, Lassa virus glycoprotein complex, and influenza hemagglutinin, where glycosylation plays a known role in shielding immunogenic epitopes. Overall, our data reveal how organisation of glycosylation across class I viral fusion proteins influence not only individual glycan compositions but also the immunological pressure across the protein surface.


Assuntos
Glicoproteínas/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Polissacarídeos , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas Virais de Fusão/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicoproteínas/química , Glicoproteínas/ultraestrutura , Glicosilação , Células HEK293 , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Evasão da Resposta Imune/fisiologia , Vírus Lassa/imunologia , Vírus Lassa/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Orthomyxoviridae/imunologia , Orthomyxoviridae/metabolismo , Polissacarídeos/química , Polissacarídeos/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/ultraestrutura , Proteínas Virais/química , Proteínas Virais/imunologia , Proteínas Virais/ultraestrutura
11.
Cell Rep ; 31(4): 107583, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348769

RESUMO

Structural and functional studies of HIV envelope glycoprotein (Env) as a transmembrane protein have long been complicated by challenges associated with inherent flexibility of the molecule and the membrane-embedded hydrophobic regions. Here, we present approaches for incorporating full-length, wild-type HIV-1 Env, as well as C-terminally truncated and stabilized versions, into lipid assemblies, providing a modular platform for Env structural studies by single particle electron microscopy. We reconstitute a full-length Env clone into a nanodisc, complex it with a membrane-proximal external region (MPER) targeting antibody 10E8, and structurally define the full quaternary epitope of 10E8 consisting of lipid, MPER, and ectodomain contacts. By aligning this and other Env-MPER antibody complex reconstructions with the lipid bilayer, we observe evidence of Env tilting as part of the neutralization mechanism for MPER-targeting antibodies. We also adapt the platform toward vaccine design purposes by introducing stabilizing mutations that allow purification of unliganded Env with a peptidisc scaffold.


Assuntos
Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Bicamadas Lipídicas/metabolismo , Humanos
12.
mBio ; 10(4)2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266872

RESUMO

As a consequence of their independent evolutionary origins in apes and Old World monkeys, human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses of the SIVsmm/mac lineage express phylogenetically and antigenically distinct envelope glycoproteins. Thus, HIV-1 Env-specific antibodies do not typically cross-react with the Env proteins of SIVsmm/mac isolates. Here we show that PGT145, a broadly neutralizing antibody to a quaternary epitope at the V2 apex of HIV-1 Env, directs the lysis of SIVsmm/mac-infected cells by antibody-dependent cellular cytotoxicity (ADCC) but does not neutralize SIVsmm/mac infectivity. Amino acid substitutions in the V2 loop of SIVmac239 corresponding to the epitope for PGT145 in HIV-1 Env modulate sensitivity to this antibody. Whereas a substitution in a conserved N-linked glycosylation site (N171Q) eliminates sensitivity to ADCC, a lysine-to-serine substitution in this region (K180S) increases ADCC and renders the virus susceptible to neutralization. These differences in function correlate with an increase in the affinity of PGT145 binding to Env on the surface of virus-infected cells and to soluble Env trimers. To our knowledge, this represents the first instance of an HIV-1 Env-specific antibody that cross-reacts with SIVsmm/mac Env and illustrates how differences in antibody binding affinity for Env can differentiate sensitivity to ADCC from neutralization.IMPORTANCE Here we show that PGT145, a potent broadly neutralizing antibody to HIV-1, directs the lysis of SIV-infected cells by antibody-dependent cellular cytotoxicity but does not neutralize SIV infectivity. This represents the first instance of cross-reactivity of an HIV-1 Env-specific antibody with SIVsmm/mac Env and reveals that antibody binding affinity can differentiate sensitivity to ADCC from neutralization.


Assuntos
Anticorpos Neutralizantes/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Glicoproteínas/metabolismo , Anticorpos Anti-HIV/metabolismo , Testes de Neutralização , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Humanos , Ligação Proteica , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento
13.
Cell Rep ; 23(11): 3249-3261, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898396

RESUMO

Broadly neutralizing antibodies (bnAbs) targeting the HIV envelope glycoprotein (Env) typically take years to develop. Longitudinal analyses of both neutralizing antibody lineages and viruses at serial time points during infection provide a basis for understanding the co-evolutionary contest between HIV and the humoral immune system. Here, we describe the structural characterization of an apex-targeting antibody lineage and autologous clade A viral Env from a donor in the Protocol C cohort. Comparison of Ab-Env complexes at early and late time points reveals that, within the antibody lineage, the CDRH3 loop rigidifies, the bnAb angle of approach steepens, and surface charges are mutated to accommodate glycan changes. Additionally, we observed differences in site-specific glycosylation between soluble and full-length Env constructs, which may be important for tuning optimal immunogenicity in soluble Env trimers. These studies therefore provide important guideposts for design of immunogens that prime and mature nAb responses to the Env V2-apex.


Assuntos
Vacinas contra a AIDS/metabolismo , Anticorpos Neutralizantes/metabolismo , Evolução Molecular , Anticorpos Anti-HIV/metabolismo , HIV-1/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Sítios de Ligação de Anticorpos , Microscopia Crioeletrônica , Epitopos/química , Epitopos/imunologia , Glicosilação , Células HEK293 , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
14.
Immunity ; 47(5): 990-1003.e9, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166592

RESUMO

Understanding how broadly neutralizing antibodies (bnAbs) to HIV envelope (Env) develop during natural infection can help guide the rational design of an HIV vaccine. Here, we described a bnAb lineage targeting the Env V2 apex and the Ab-Env co-evolution that led to development of neutralization breadth. The lineage Abs bore an anionic heavy chain complementarity-determining region 3 (CDRH3) of 25 amino acids, among the shortest known for this class of Abs, and achieved breadth with only 10% nucleotide somatic hypermutation and no insertions or deletions. The data suggested a role for Env glycoform heterogeneity in the activation of the lineage germline B cell. Finally, we showed that localized diversity at key V2 epitope residues drove bnAb maturation toward breadth, mirroring the Env evolution pattern described for another donor who developed V2-apex targeting bnAbs. Overall, these findings suggest potential strategies for vaccine approaches based on germline-targeting and serial immunogen design.


Assuntos
Anticorpos Neutralizantes/fisiologia , Linhagem da Célula , Anticorpos Anti-HIV/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/química , Regiões Determinantes de Complementaridade , Anticorpos Anti-HIV/química , Humanos
15.
Nature ; 548(7665): 108-111, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28726771

RESUMO

No immunogen to date has reliably elicited broadly neutralizing antibodies to HIV in humans or animal models. Advances in the design of immunogens that antigenically mimic the HIV envelope glycoprotein (Env), such as the soluble cleaved trimer BG505 SOSIP, have improved the elicitation of potent isolate-specific antibody responses in rabbits and macaques, but so far failed to induce broadly neutralizing antibodies. One possible reason for this failure is that the relevant antibody repertoires are poorly suited to target the conserved epitope regions on Env, which are somewhat occluded relative to the exposed variable epitopes. Here, to test this hypothesis, we immunized four cows with BG505 SOSIP. The antibody repertoire of cows contains long third heavy chain complementary determining regions (HCDR3) with an ultralong subset that can reach more than 70 amino acids in length. Remarkably, BG505 SOSIP immunization resulted in rapid elicitation of broad and potent serum antibody responses in all four cows. Longitudinal serum analysis for one cow showed the development of neutralization breadth (20%, n = 117 cross-clade isolates) in 42 days and 96% breadth (n = 117) at 381 days. A monoclonal antibody isolated from this cow harboured an ultralong HCDR3 of 60 amino acids and neutralized 72% of cross-clade isolates (n = 117) with a potent median IC50 of 0.028 µg ml-1. Breadth was elicited with a single trimer immunogen and did not require additional envelope diversity. Immunization of cows may provide an avenue to rapidly generate antibody prophylactics and therapeutics to address disease agents that have evolved to avoid human antibody responses.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/isolamento & purificação , Bovinos/imunologia , HIV/imunologia , Imunização , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Células HEK293 , Proteína gp160 do Envelope de HIV/imunologia , Humanos
16.
Phys Rev E ; 95(5-1): 052408, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28618627

RESUMO

We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.


Assuntos
Fagos Bacilares/fisiologia , Empacotamento do DNA , DNA Viral , Integração Viral , Fenômenos Biomecânicos , Empacotamento do DNA/fisiologia , DNA Viral/fisiologia , Elasticidade , Tamanho do Genoma , Microscopia Eletrônica , Modelos Biológicos , Conformação de Ácido Nucleico , Pinças Ópticas , Pressão Osmótica , Polietilenoglicóis , Montagem de Vírus/fisiologia , Integração Viral/fisiologia
17.
Biophys J ; 108(2): 315-24, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25606680

RESUMO

We report evidence for an unconventional type of allosteric regulation of a biomotor. We show that the genome-packaging motor of phage ϕ29 is regulated by a sensor that detects the density and conformation of the DNA packaged inside the viral capsid, and slows the motor by a mechanism distinct from the effect of a direct load force on the motor. Specifically, we show that motor-ATP interactions are regulated by a signal that is propagated allosterically from inside the viral shell to the motor mounted on the outside. This signal continuously regulates the motor speed and pausing in response to changes in either density or conformation of the packaged DNA, and slows the motor before the buildup of large forces resisting DNA confinement. Analysis of motor slipping reveals that the force resisting packaging remains low (<1 pN) until ∼ 70% and then rises sharply to ∼ 23 pN at high filling, which is a several-fold lower value than was previously estimated under the assumption that force alone slows the motor. These findings are consistent with recent studies of the stepping kinetics of the motor. The allosteric regulatory mechanism we report allows double-stranded DNA viruses to achieve rapid, high-density packing of their genomes by limiting the buildup of nonequilibrium load forces on the motor.


Assuntos
Empacotamento do DNA , DNA Viral/química , Proteínas Virais/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Fagos Bacilares/química , Fagos Bacilares/metabolismo , Fagos Bacilares/fisiologia , Ligação Proteica , Proteínas Virais/metabolismo , Montagem de Vírus
18.
Proc Natl Acad Sci U S A ; 111(23): 8345-50, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912187

RESUMO

Many viruses use molecular motors that generate large forces to package DNA to near-crystalline densities inside preformed viral proheads. Besides being a key step in viral assembly, this process is of interest as a model for understanding the physics of charged polymers under tight 3D confinement. A large number of theoretical studies have modeled DNA packaging, and the nature of the molecular dynamics and the forces resisting the tight confinement is a subject of wide debate. Here, we directly measure the packaging of single DNA molecules in bacteriophage phi29 with optical tweezers. Using a new technique in which we stall the motor and restart it after increasing waiting periods, we show that the DNA undergoes nonequilibrium conformational dynamics during packaging. We show that the relaxation time of the confined DNA is >10 min, which is longer than the time to package the viral genome and 60,000 times longer than that of the unconfined DNA in solution. Thus, the confined DNA molecule becomes kinetically constrained on the timescale of packaging, exhibiting glassy dynamics, which slows the motor, causes significant heterogeneity in packaging rates of individual viruses, and explains the frequent pausing observed in DNA translocation. These results support several recent hypotheses proposed based on polymer dynamics simulations and show that packaging cannot be fully understood by quasistatic thermodynamic models.


Assuntos
Fagos Bacilares/genética , Fagos Bacilares/fisiologia , Empacotamento do DNA , Montagem de Vírus , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/virologia , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Genoma Viral/genética , Cinética , Modelos Genéticos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Pinças Ópticas , Ligação Proteica , Fatores de Tempo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA