Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(12): e12380, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010190

RESUMO

Extracellular vesicles (EVs) are lipid bilayer nanoparticles involved in cell-cell communication that are released into the extracellular space by all cell types. The cargo of EVs includes proteins, lipids, nucleic acids, and metabolites reflecting their cell of origin. EVs have recently been isolated directly from solid tissues, and this may provide insights into how EVs mediate communication between cells in vivo. Even though EVs have been isolated from tissues, their point of origin when they are in the interstitial space has been uncertain. In this study, we performed three-dimensional (3D) reconstruction using transmission electron tomography of metastatic and normal liver tissues with a focus on the presence of EVs in the interstitium. After chemical fixation of the samples and subsequent embedding of tissue pieces in resin, ultrathin slices (300 nm) were cut and imaged on a 120 ekV transmission electron microscopy as a tilt series (a series of subsequent images tilted at different angles). These were then computationally illustrated in a 3D manner to reconstruct the imaged tissue volume. We identified the cells delimiting the interstitial space in both types of tissues, and small distinct spherical structures with a diameter of 30-200 nm were identified between the cells. These round structures appeared to be more abundant in metastatic tissue compared to normal tissue. We suggest that the observed spherical structures in the interstitium of the metastatic and non-metastatic liver represent EVs. This work thus provides the first 3D visualization of EVs in human tissue.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Fígado/diagnóstico por imagem , Microscopia Eletrônica de Transmissão
2.
Mol Cell ; 83(19): 3470-3484.e8, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751741

RESUMO

Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.


Assuntos
Mitocôndrias , Triagem , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas , Fosforilação Oxidativa , Proteínas Ribossômicas/metabolismo
3.
Nat Commun ; 13(1): 6061, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229432

RESUMO

Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species.


Assuntos
Doenças Mitocondriais , Ubiquinona , Ataxia , Humanos , Manganês/toxicidade , Doenças Mitocondriais/metabolismo , Oxigenases de Função Mista , Debilidade Muscular , Ubiquinona/deficiência , Ubiquinona/metabolismo
4.
Elife ; 112022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129435

RESUMO

The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Transporte Biológico , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
5.
Nat Commun ; 12(1): 5277, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489474

RESUMO

The pyruvate dehydrogenase complex (PDHc) links glycolysis to the citric acid cycle by converting pyruvate into acetyl-coenzyme A. PDHc encompasses three enzymatically active subunits, namely pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. Dihydrolipoyl transacetylase is a multidomain protein comprising a varying number of lipoyl domains, a peripheral subunit-binding domain, and a catalytic domain. It forms the structural core of the complex, provides binding sites for the other enzymes, and shuffles reaction intermediates between the active sites through covalently bound lipoyl domains. The molecular mechanism by which this shuttling occurs has remained elusive. Here, we report a cryo-EM reconstruction of the native E. coli dihydrolipoyl transacetylase core in a resting state. This structure provides molecular details of the assembly of the core and reveals how the lipoyl domains interact with the core at the active site.


Assuntos
Proteínas de Escherichia coli/química , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Domínios Proteicos , Complexo Piruvato Desidrogenase/isolamento & purificação , Ácido Tióctico/análogos & derivados , Ácido Tióctico/química , Ácido Tióctico/metabolismo
6.
EMBO Rep ; 21(12): e51015, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016568

RESUMO

Respiratory chains are crucial for cellular energy conversion and consist of multi-subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high-resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.


Assuntos
Citocromos c , Proteínas de Saccharomyces cerevisiae , Citocromos c/genética , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Nat Struct Mol Biol ; 26(1): 50-57, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598556

RESUMO

Respiratory chain complexes execute energy conversion by connecting electron transport with proton translocation over the inner mitochondrial membrane to fuel ATP synthesis. Notably, these complexes form multi-enzyme assemblies known as respiratory supercomplexes. Here we used single-particle cryo-EM to determine the structures of the yeast mitochondrial respiratory supercomplexes III2IV and III2IV2, at 3.2-Å and 3.5-Å resolutions, respectively. We revealed the overall architecture of the supercomplex, which deviates from the previously determined assemblies in mammals; obtained a near-atomic structure of the yeast complex IV; and identified the protein-protein and protein-lipid interactions implicated in supercomplex formation. Take together, our results demonstrate convergent evolution of supercomplexes in mitochondria that, while building similar assemblies, results in substantially different arrangements and structural solutions to support energy conversion.


Assuntos
Microscopia Crioeletrônica/métodos , Animais , Transporte de Elétrons/fisiologia , Humanos , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA