Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202038

RESUMO

Propylene-based random copolymers with either ethylene or 1-hexene as comonomer, produced using a metallocene catalyst, were studied regarding their crystallization behaviors, with a focus on rapid cooling. To get an impression of processing effects, fast scanning chip calorimetry (FSC) was used in addition to the characterization of the mechanical performance. When comparing the comonomer type and the relation to commercial grades based on Ziegler-Natta-type catalysts, both an interaction with the catalyst-related regio-defects and a significant difference between ethylene and 1-hexene was observed. A soluble-type nucleating agent was found to modify the behavior, but to an increasingly lesser degree at high cooling rates.

2.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209867

RESUMO

Polyethylene (PE) plastomers, single-site catalyst-based homogeneous linear low-density PEs (LLDPEs), combine low crystallinity, softness, and elasticity, making them ideal candidates for numerous applications such as hot-melt adhesives (HMA). As plastomers crystallize rather slowly, a number of possible low molecular weight polyolefin components were tested to accelerate solidification. An ideal modifier should accelerate solidification while maintaining transparency and softness of the base polymer. A Queo plastomer type was modified with different PE and PP waxes at concentrations of 5 to 25 wt.-%. Next to conventional calorimetry, a rheological technique was applied to study solidification. The resulting morphology was studied by atomic force microscopy, and the final compositions were investigated regarding their mechanical and optical performance. Accelerated solidification was observed in all cases, but a quite different course of structure formation could be concluded. PE waxes dissolve in the melt state, forming a lamellar network during cooling, whereas PP waxes form a heterogeneous blend in the melt for which the wax droplets solidify before the matrix. The particulate-type modification by the PP wax also affects stiffness less while retaining transparency better.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA