RESUMO
Vaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. Here, to precisely engineer bnAb boosting immunogens, we use molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env). By mapping how bnAbs use encounter states to find their bound states, we identify Env mutations predicted to select for specific antibody mutations in two HIV-1 bnAb B cell lineages. The Env mutations encode antibody affinity gains and select for desired antibody mutations in vivo. These results demonstrate proof-of-concept that Env immunogens can be designed to directly select for specific antibody mutations at residue-level precision by vaccination, thus demonstrating the feasibility of sequential bnAb-inducing HIV-1 vaccine design.
Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , HIV-1 , Simulação de Dinâmica Molecular , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana , HIV-1/imunologia , HIV-1/genética , Anticorpos Anti-HIV/imunologia , Humanos , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/prevenção & controle , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/genética , Linfócitos B/imunologia , Afinidade de Anticorpos/imunologia , Engenharia de Proteínas/métodosRESUMO
A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541). Here, we report MPER peptide-liposome induction of polyclonal HIV-1 B cell lineages of mature bnAbs and their precursors, the most potent of which neutralized 15% of global tier 2 HIV-1 strains and 35% of clade B strains with lineage initiation after the second immunization. Neutralization was enhanced by vaccine selection of improbable mutations that increased antibody binding to gp41 and lipids. This study demonstrates proof of concept for rapid vaccine induction of human B cell lineages with heterologous neutralizing activity and selection of antibody improbable mutations and outlines a path for successful HIV-1 vaccine development.
Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Linfócitos B , Anticorpos Anti-HIV , HIV-1 , Humanos , Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linhagem da Célula , Lipossomos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Mutação , Proteína gp41 do Envelope de HIV/imunologiaRESUMO
Current seasonal influenza virus vaccines induce responses primarily against immunodominant but highly plastic epitopes in the globular head of the hemagglutinin (HA) glycoprotein. Because of viral antigenic drift at these sites, vaccines need to be updated and readministered annually. To increase the breadth of influenza vaccine-mediated protection, we developed an antigenically complex mixture of recombinant HAs designed to redirect immune responses to more conserved domains of the protein. Vaccine-induced antibodies were disproportionally redistributed to the more conserved stalk of the HA without hindering, and in some cases improving, antibody responses against the head domain. These improved responses led to increased protection against homologous and heterologous viral challenges in both mice and ferrets compared with conventional vaccine approaches. Thus, antigenically complex protein mixtures can at least partially overcome HA head domain antigenic immunodominance and may represent a step toward a more universal influenza vaccine.
Assuntos
Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Vacinação , Animais , Vacinas contra Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Camundongos , Anticorpos Antivirais/imunologia , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Antígenos Virais/imunologia , Feminino , Camundongos Endogâmicos BALB CRESUMO
A major goal of HIV-1 vaccine development is the induction of broadly neutralizing antibodies (bnAbs). Although success has been achieved in initiating bnAb B cell lineages, design of boosting immunogens that select for bnAb B cell receptors with improbable mutations required for bnAb affinity maturation remains difficult. Here, we demonstrate a process for designing boosting immunogens for a V3-glycan bnAb B cell lineage. The immunogens induced affinity-matured antibodies by selecting for functional improbable mutations in bnAb precursor knockin mice. Moreover, we show similar success in prime and boosting with nucleoside-modified mRNA-encoded HIV-1 envelope trimer immunogens, with improved selection by mRNA immunogens of improbable mutations required for bnAb binding to key envelope glycans. These results demonstrate the ability of both protein and mRNA prime-boost immunogens for selection of rare B cell lineage intermediates with neutralizing breadth after bnAb precursor expansion, a key proof of concept and milestone toward development of an HIV-1 vaccine.
Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Linfócitos B , Anticorpos Anti-HIV , HIV-1 , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , HIV-1/genética , Camundongos , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Humanos , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Anticorpos Amplamente Neutralizantes/imunologia , Mutação , Desenvolvimento de Vacinas , Imunização Secundária , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
Immunodominant and highly conserved flavivirus envelope proteins can trigger cross-reactive IgG antibodies against related flaviviruses, which shapes subsequent protection or disease severity. This study examined how prior dengue serotype 3 (DENV-3) infection affects subsequent Zika virus (ZIKV) plasmablast responses in rhesus macaques (n = 4). We found that prior DENV-3 infection was not associated with diminished ZIKV-neutralizing antibodies or magnitude of plasmablast activation. Rather, characterization of 363 plasmablasts and their derivative 177 monoclonal antibody supernatants from acute ZIKV infection revealed that prior DENV-3 infection was associated with a differential isotype distribution toward IgG, lower somatic hypermutation, and lesser B cell receptor variable gene diversity as compared with repeat ZIKV challenge. We did not find long-lasting DENV-3 cross-reactive IgG after a ZIKV infection but did find persistent ZIKV-binding cross-reactive IgG after a DENV-3 infection, suggesting non-reciprocal cross-reactive immunity. Infection with ZIKV after DENV-3 boosted pre-existing DENV-3-neutralizing antibodies by two- to threefold, demonstrating immune imprinting. These findings suggest that the order of DENV and ZIKV infections has impact on the quality of early B cell immunity which has implications for optimal immunization strategies. IMPORTANCE: The Zika virus epidemic of 2015-2016 in the Americas revealed that this mosquito-transmitted virus could be congenitally transmitted during pregnancy and cause birth defects in newborns. Currently, there are no interventions to mitigate this disease and Zika virus is likely to re-emerge. Understanding how protective antibody responses are generated against Zika virus can help in the development of a safe and effective vaccine. One main challenge is that Zika virus co-circulates with related viruses like dengue, such that prior exposure to one can generate cross-reactive antibodies against the other which may enhance infection and disease from the second virus. In this study, we sought to understand how prior dengue virus infection impacts subsequent immunity to Zika virus by single-cell sequencing of antibody producing cells in a second Zika virus infection. Identifying specific qualities of Zika virus immunity that are modulated by prior dengue virus immunity will enable optimal immunization strategies.
Assuntos
Vírus da Dengue , Dengue , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Macaca mulatta , Sorogrupo , Anticorpos Antivirais , Imunoglobulina G , Anticorpos Neutralizantes , Reações CruzadasRESUMO
INTRODUCTION: Adverse childhood experiences (ACEs) can lead to chronic diseases and mental health conditions; however, less is known about the associations of ACEs to the reproductive traumas of infertility and pregnancy loss. The purpose of this integrative review was to explore relationships between ACEs and the reproductive traumas of infertility and pregnancy loss. METHODS: We searched PubMed, SocINDEX, PsycINFO, and CINAHL databases in December 2021 and 2022. Inclusion criteria were qualitative or quantitative research, systematic or integrative reviews, or meta-analysis articles in English that were peer-reviewed and full-text, addressing any ACE from the ACE Checklist and infertility or pregnancy loss. A total of 20 articles were included in the review. We used Whittemore and Knafl's integrative review framework, Preferred Reporting Items for Systematic Reviews and Meta-analyses for reporting, and Covidence software for data management. A quality appraisal using Joanna Briggs Institute critical appraisal tools was performed. Relevant data were extracted into a matrix for iterative comparison. RESULTS: Twenty studies were included in the review. Results support there may be an association between pregnancy loss and infertility in women with a history of ACE, although results are mixed between infertility and ACEs. We also identified other concepts related to ACEs and the reproductive traumas of infertility and pregnancy loss and include racial and ethnically diverse populations, social determinants of health, modifiable risk factors, and stress appraisals. DISCUSSION: Midwives and other women's health care providers should be aware that ACEs may be associated with pregnancy loss and infertility, although additional research is needed to further explore the relationships with infertility, mental health, and hypothalamic-pituitary-adrenal axis dysregulation from allostatic load. Trauma-informed care and the development of effective interventions are warranted for women who experience ACEs. Providers should consider earlier interventions, including emotional services, for women with a history of ACE or reproductive trauma.
Assuntos
Experiências Adversas da Infância , Infertilidade , Gravidez , Humanos , Feminino , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , ReproduçãoRESUMO
An effective HIV-1 vaccine remains a critical unmet need for ending the AIDS epidemic. Vaccine trials conducted to date have suggested the need to increase the durability and functionality of vaccine-elicited antibodies to improve efficacy. We hypothesized that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T cell help and improve antibody production against HIV-1. To test this, we developed an innovative conjugate vaccine regimen that used a modified vaccinia virus Ankara (MVA) co-expressing HIV-1 envelope (Env) and the hepatitis B virus surface antigen (HBsAg) as a prime, followed by two Env-HBsAg conjugate protein boosts. We compared the immunogenicity of this conjugate regimen to matched HIV-1 Env-only vaccines in two groups of 5 juvenile rhesus macaques previously immunized with hepatitis B vaccines in infancy. We found expansion of both HIV-1 and HBsAg-specific circulating T follicular helper cells and elevated serum levels of CXCL13, a marker for germinal center activity, after boosting with HBsAg-Env conjugate antigens in comparison to Env alone. The conjugate vaccine elicited higher levels of antibodies binding to select HIV Env antigens, but we did not observe significant improvement in antibody functionality, durability, maturation, or B cell clonal expansion. These data suggests that conjugate vaccination can engage both HIV-1 Env and HBsAg specific T cell help and modify antibody responses at early time points, but more research is needed to understand how to leverage this strategy to improve the durability and efficacy of next-generation HIV vaccines.
RESUMO
IMPORTANCE: Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.
Assuntos
Animais Recém-Nascidos , Modelos Animais de Doenças , Infecções por HIV , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios , Viremia , Animais , Criança , Humanos , Animais Recém-Nascidos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Viremia/imunologia , Viremia/virologia , HIV/imunologia , HIV/fisiologiaRESUMO
Infants and children infected with human immunodeficiency virus (HIV)-1 have been shown to develop neutralizing antibodies (nAbs) against heterologous HIV-1 strains, characteristic of broadly nAbs (bnAbs). Thus, having a neonatal model for the induction of heterologous HIV-1 nAbs may provide insights into the mechanisms of neonatal bnAb development. Here, we describe a neonatal model for heterologous HIV-1 nAb induction in pathogenic simian-HIV (SHIV)-infected rhesus macaques (RMs). Viral envelope (env) evolution showed mutations at multiple sites, including nAb epitopes. All 13 RMs generated plasma autologous HIV-1 nAbs. However, 8/13 (62%) RMs generated heterologous HIV-1 nAbs with increasing potency over time, albeit with limited breadth, and mapped to multiple nAb epitopes, suggestive of a polyclonal response. Moreover, plasma heterologous HIV-1 nAb development was associated with antigen-specific, lymph-node-derived germinal center activity. We define a neonatal model for heterologous HIV-1 nAb induction that may inform future pediatric HIV-1 vaccines for bnAb induction in infants and children.
Assuntos
Doenças Transmissíveis , Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Lactente , Recém-Nascido , Humanos , Criança , Macaca mulatta , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Anticorpos Neutralizantes , EpitoposRESUMO
Fcγ receptors (FcγRs) are membrane-bound glycoproteins that bind to the fragment crystallizable (Fc) constant regions of IgG antibodies. Interactions between IgG immune complexes and FcγRs can initiate signal transduction that mediates important components of the immune response including activation of immune cells for clearance of opsonized pathogens or infected host cells. In humans, many studies have identified associations between FcγR gene polymorphisms and risk of infection, or progression of disease, suggesting a gene-level impact on FcγR-dependent immune responses. Rhesus macaques are an important translational model for most human health interventions, yet little is known about the breadth of rhesus macaque FcγR genetic diversity. This lack of knowledge prevents evaluation of the impact of FcγR polymorphisms on outcomes of preclinical studies performed in rhesus macaques. In this study we used long-read RNA sequencing to define the genetic diversity of FcγRs in 206 Indian-origin Rhesus macaques, Macaca mulatta. We describe the frequency of single nucleotide polymorphisms, insertions, deletions, frame-shift mutations, and isoforms. We also index the identified diversity using predicted and known rhesus macaque FcγR and Fc-FcγR structures. Future studies that define the functional significance of this genetic diversity will facilitate a better understanding of the correlation between human and macaque FcγR biology that is needed for effective translation of studies with antibody-mediated outcomes performed in rhesus macaques.
Assuntos
Complexo Antígeno-Anticorpo , Receptores de IgG , Humanos , Animais , Macaca mulatta , Análise de Sequência de RNA , Mutação da Fase de Leitura , Imunoglobulina G , Glicoproteínas de MembranaRESUMO
Vaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and, in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. To precisely engineer bnAb boosting immunogens, we used molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env). By mapping how bnAbs use encounter states to find their bound states, we identified Env mutations that were predicted to select for specific antibody mutations in two HIV-1 bnAb B cell lineages. The Env mutations encoded antibody affinity gains and selected for desired antibody mutations in vivo. These results demonstrate proof-of-concept that Env immunogens can be designed to directly select for specific antibody mutations at residue-level precision by vaccination, thus demonstrating the feasibility of sequential bnAb-inducing HIV-1 vaccine design.
RESUMO
Natural antibodies (Abs) can target host glycans on the surface of pathogens. We studied the evolution of glycan-reactive B cells of rhesus macaques and humans using glycosylated HIV-1 envelope (Env) as a model antigen. 2G12 is a broadly neutralizing Ab (bnAb) that targets a conserved glycan patch on Env of geographically diverse HIV-1 strains using a unique heavy-chain (VH) domain-swapped architecture that results in fragment antigen-binding (Fab) dimerization. Here, we describe HIV-1 Env Fab-dimerized glycan (FDG)-reactive bnAbs without VH-swapped domains from simian-human immunodeficiency virus (SHIV)-infected macaques. FDG Abs also recognized cell-surface glycans on diverse pathogens, including yeast and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike. FDG precursors were expanded by glycan-bearing immunogens in macaques and were abundant in HIV-1-naive humans. Moreover, FDG precursors were predominately mutated IgM+IgD+CD27+, thus suggesting that they originated from a pool of antigen-experienced IgM+ or marginal zone B cells.
Assuntos
Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Polissacarídeos/imunologia , SARS-CoV-2/imunologia , Vírus da Imunodeficiência Símia/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , Dimerização , Epitopos/imunologia , Glicosilação , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Macaca mulatta , Polissacarídeos/química , Receptores de Antígenos de Linfócitos B/química , Vírus da Imunodeficiência Símia/genética , Vacinas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.
Assuntos
Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Resfriado Comum/prevenção & controle , Reações Cruzadas/imunologia , Pandemias , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Animais , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca/imunologia , Masculino , Modelos Moleculares , Nanopartículas/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Traqueia , VacinaçãoRESUMO
Betacoronaviruses (betaCoVs) caused the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, and now the SARS-CoV-2 pandemic. Vaccines that elicit protective immune responses against SARS-CoV-2 and betaCoVs circulating in animals have the potential to prevent future betaCoV pandemics. Here, we show that immunization of macaques with a multimeric SARS-CoV-2 receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052-Alum elicited cross-neutralizing antibody responses against SARS-CoV-1, SARS-CoV-2, batCoVs and the UK B.1.1.7 SARS-CoV-2 mutant virus. Nanoparticle vaccination resulted in a SARS-CoV-2 reciprocal geometric mean neutralization titer of 47,216, and robust protection against SARS-CoV-2 in macaque upper and lower respiratory tracts. Importantly, nucleoside-modified mRNA encoding a stabilized transmembrane spike or monomeric RBD protein also induced SARS-CoV-1 and batCoV cross-neutralizing antibodies, albeit at lower titers. These results demonstrate current mRNA vaccines may provide some protection from future zoonotic betaCoV outbreaks, and provide a platform for further development of pan-betaCoV nanoparticle vaccines.
RESUMO
Administration of vaccines during pregnancy provides maternal protection against infectious diseases. This protection is extended to their infants during the first months of life, as pathogen-specific antibodies formed in response to maternal vaccination are transferred across the placenta to the fetus. Notably, Tdap (tetanus-diphtheria-acellular pertussis) vaccination booster is routinely administered to pregnant women both to prevent neonatal tetanus and to ensure that infants have protective levels of pertussis antibodies until they are able to establish their own vaccine-induced levels. Whether infant protection through maternal immunization is merely due to an increase in maternal antibody levels or whether maternal immunization enhances the transfer of vaccine-specific antibodies is unclear. Moreover, the potential impact of prenatal vaccinations on the transplacental transfer of other antibodies, such as antibodies raised as a result of infections or other vaccines administered prior to pregnancy, has not been studied. The goal of this study was to define the impact of maternal vaccination on IgG transplacental transfer efficiency. We analyzed antigen-specific antibody populations and IgG subclass distribution in maternal and cord blood samples from 58 mother-infant pairs. All women received the seasonal inactivated influenza vaccine during pregnancy and 25 women received the Tdap vaccine during the second or third trimester of gestation. Prenatal Tdap vaccination did not impact the efficiency of IgG transplacental transfer; however, it was associated with higher maternal and infant vaccine-elicited Tdap-specific antibody levels, and with a higher proportion of infants with protective levels of antibodies, especially against diphtheria. There was also no difference in the IgG transplacental transfer rate of antibodies against non-Tdap vaccines between the two groups of women. Our results confirm previous reports demonstrating the benefits of prenatal Tdap immunization and indicate that this strategy does not impede the transplacental transfer of other antibodies that are also important for infant protection.
Assuntos
Vacinas contra Difteria, Tétano e Coqueluche Acelular , Difteria , Coqueluche , Anticorpos Antibacterianos , Vacina contra Difteria e Tétano , Feminino , Humanos , Lactente , Gravidez , VacinaçãoRESUMO
BACKGROUND: Development of a cytomegalovirus (CMV) vaccine is a high priority. However, the ability of antibodies to protect against CMV infection is not well characterized. Studies of maternal antibodies in infants offer the potential to identify humoral correlates of protection against postnatal acquisition. METHODS: This hypothesis-generating study analyzed 29 Ugandan mother-infant pairs that were followed weekly for CMV acquisition. Seventeen mothers and no infants were infected with human immunodeficiency virus (HIV). We evaluated the association between CMV-specific immunoglobulin G (IgG) responses in mothers at the time of delivery and their infants' CMV status at 6 months of age. We also assessed levels of CMV-specific IgG in infants at 6 weeks of age. CMV-specific IgG responses in the mother-infant pairs were then analyzed on the basis of perinatal HIV exposure. RESULTS: We found similar levels of multiple CMV glycoprotein-specific IgG binding specificities and functions in mothers and infants, irrespective of perinatal HIV exposure or infant CMV status at 6 months of age. However, the glycoprotein B-specific IgG titer, measured by 2 distinct assays, was higher in infants without CMV infection and was moderately associated with delayed CMV acquisition. CONCLUSIONS: These data suggest that high levels of glycoprotein B-specific IgG may contribute to the partial protection against postnatal CMV infection afforded by maternal antibodies, and they support the continued inclusion of glycoprotein B antigens in CMV vaccine candidates.