Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Front Microbiol ; 13: 948383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992645

RESUMO

Several new structures of three types of protein complexes, obtained by cryo-electron microscopy (cryo-EM) and published between 2019 and 2021, identify a new family of natural molecular wheels, the "5:2 rotary motors." These span the cytoplasmic membranes of bacteria, and their rotation is driven by ion flow into the cell. They consist of a pentameric wheel encircling a dimeric axle within the cytoplasmic membrane of both Gram-positive and gram-negative bacteria. The axles extend into the periplasm, and the wheels extend into the cytoplasm. Rotation of these wheels has never been observed directly; it is inferred from the symmetry of the complexes and from the roles they play within the larger systems that they are known to power. In particular, the new structure of the stator complex of the Bacterial Flagellar Motor, MotA5B2, is consistent with a "wheels within wheels" model of the motor. Other 5:2 rotary motors are believed to share the core rotary function and mechanism, driven by ion-motive force at the cytoplasmic membrane. Their structures diverge in their periplasmic and cytoplasmic parts, reflecting the variety of roles that they perform. This review focuses on the structures of 5:2 rotary motors and their proposed mechanisms and functions. We also discuss molecular rotation in general and its relation to the rotational symmetry of molecular complexes.

2.
ACS Mater Au ; 2(2): 176-189, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855757

RESUMO

While the improvement of water-based adhesives with renewable additives is important as industry shifts toward more sustainable practices, a complete understanding of how the compatibility between additives and polymers affects adhesive performance is currently lacking. To elucidate these links, cellulose nanocrystals (CNCs) were first functionalized via surface-initiated atom-transfer radical polymerization with the hydrophobic polymers poly(butyl acrylate) (PBA) and poly(methyl methacrylate) (PMMA) to facilitate their incorporation into latex-based pressure-sensitive adhesives (PSAs). Next, PBA latexes were synthesized using seeded semibatch emulsion polymerization with unmodified or polymer-grafted CNCs added in situ at a loading of 0.5 or 1 phm (parts per hundred parts of monomer). Viscosity and electron microscopy suggested that the polymer-grafted CNCs were incorporated inside or on the latex particles. PSAs containing any CNC type had one or more improved properties (compared to the no-CNC "base case"); CNCs with a low degree of polymerization (DP) grafts exhibited improved tack (up to 2.5-fold higher) and peel strength (up to 6-fold higher) relative to PSAs with unmodified CNCs. The best performing PSA contained the low DP PMMA-grafted CNCs, which is attributed to the higher glass transition temperature and the higher wettability of the PMMA grafts compared to PBA, and the more uniform dispersion of polymer-grafted CNCs throughout the PSA film. In contrast, PSAs containing CNCs with high DP grafts resulted in reduced tack and peel strength (compared to low DP grafts) due to enhanced CNC aggregation. Unfortunately, all PSAs containing polymer-grafted CNCs exhibited inferior shear strength relative to PSAs with unmodified CNCs (and comparable shear strength to the no-CNC "base case"). Collectively, these results provide guidelines for future optimization of more sustainable latex-based PSAs.

3.
Philos Trans A Math Phys Eng Sci ; 379(2206): 20200330, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34334024

RESUMO

Emulsion polymerized latex-based pressure-sensitive adhesives (PSAs) are more environmentally benign because they are synthesized in water but often underperform compared to their solution polymerized counterparts. Studies have shown a simultaneous improvement in the tack, and peel and shear strength of various acrylic PSAs upon the addition of cellulose nanocrystals (CNCs). This work uses atomic force microscopy (AFM) to examine the role of CNCs in (i) the coalescence of hydrophobic 2-ethyl hexyl acrylate/n-butyl acrylate/methyl methacrylate (EHA/BA/MMA) latex films and (ii) as adhesion modifiers over multiple length scales. Thin films with varying solids content and CNC loading were prepared by spin coating. AFM revealed that CNCs lowered the solids content threshold for latex particle coalescence during film formation. This improved the cohesive strength of the films, which was directly reflected in the increased shear strength of the EHA/BA/MMA PSAs with increasing CNC loading. Colloidal probe AFM indicated that the nano-adhesion of thicker continuous latex films increased with CNC loading when measured over small contact areas where the effect of surface roughness was negligible. Conversely, the beneficial effects of the CNCs on macroscopic PSA tack and peel strength were outweighed by the effects of increased surface roughness with increasing CNC loading over larger surface areas. This highlights that CNCs can improve both cohesive and adhesive PSA properties; however, the effects are most pronounced when the CNCs interact favourably with the latex polymer and are uniformly dispersed throughout the adhesive film. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.


Assuntos
Celulose , Nanopartículas , Adesivos , Interações Hidrofóbicas e Hidrofílicas , Polimerização
4.
Biomacromolecules ; 22(8): 3601-3612, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34252279

RESUMO

Hydrophobic polymer-grafted cellulose nanocrystals (CNCs) were produced via surface-initiated atom-transfer radical polymerization (SI-ATRP) in two different solvents to examine the role of reaction media on the extent of surface modification. Poly(butyl acrylate)-grafted CNCs were synthesized in either dimethylformamide (DMF) (D-PBA-g-CNCs) or toluene (T-PBA-g-CNCs) alongside a free polymer from a sacrificial initiator. The colloidal stability of unmodified CNCs, initiator-modified CNCs, and PBA-g-CNCs in water, DMF, and toluene was evaluated by optical transmittance. The enhanced colloidal stability of initiator-modified CNCs in DMF led to improved accessibility to initiator groups during polymer grafting; D-PBA-g-CNCs had 30 times more grafted chains than T-PBA-g-CNCs, determined by thermogravimetric and elemental analysis. D-PBA-g-CNCs dispersed well in toluene and were hydrophobic with a water contact angle of 124° (for polymer grafts > 13 kDa) compared to 25° for T-PBA-g-CNCs. The cellulose crystal structure was preserved, and individual nanoparticles were retained when grafting was carried out in either solvent. This work highlights that optimizing CNC colloidal stability prior to grafting is more crucial than solvent-polymer compatibility to obtain high graft densities and highly hydrophobic CNCs via SI-ATRP.


Assuntos
Celulose , Nanopartículas , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polímeros
5.
Nat Microbiol ; 6(6): 712-721, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33931760

RESUMO

The bacterial flagellum is a macromolecular protein complex that enables motility in many species. Bacterial flagella self-assemble a strong, multicomponent drive shaft that couples rotation in the inner membrane to the micrometre-long flagellar filament that powers bacterial swimming in viscous fluids1-3. Here, we present structures of the intact Salmonella flagellar basal body4, encompassing the inner membrane rotor, drive shaft and outer-membrane bushing, solved using cryo-electron microscopy to resolutions of 2.2-3.7 Å. The structures reveal molecular details of how 173 protein molecules of 13 different types assemble into a complex spanning two membranes and a cell wall. The helical drive shaft at one end is intricately interwoven with the rotor component with both the export gate complex and the proximal rod forming interactions with the MS-ring. At the other end, the drive shaft distal rod passes through the LP-ring bushing complex, which functions as a molecular bearing anchored in the outer membrane through interactions with the lipopolysaccharide. The in situ structure of a protein complex capping the drive shaft provides molecular insights into the assembly process of this molecular machine.


Assuntos
Corpos Basais/ultraestrutura , Salmonella/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corpos Basais/metabolismo , Microscopia Crioeletrônica , Flagelos/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Salmonella/genética , Salmonella/metabolismo
6.
Macromol Rapid Commun ; 42(3): e2000448, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33047439

RESUMO

Cellulose nanocrystals (CNCs), a sustainable nanomaterial, are in situ incorporated into emulsion-based pressure-sensitive adhesives (PSAs). Commercially available CNCs with different surface hydrophilicity and surface charge (CNC101 and CNC103 from CelluForce) are used to explore their role in PSA property modification. Viscosity measurements and atomic force microscopy reveal differences in degree of association between the CNCs and the latex particles depending on the surface properties of the CNCs. The more hydrophilic and higher surface charge CNCs (CNC101) show less association with the latex particles. Dynamic strain sweep tests are used to analyze the strain-softening of the nanocomposites based on CNC type and loading. The CNC101 nanocomposites soften at lower strains than their CNC103 counterparts. This behavior is confirmed via dynamic frequency tests and modeling of the nanocomposites' storage moduli, which suggest the formation of CNC aggregates of, on average, 3.8 CNC101 and 1.3 CNC103 nanoparticles. Finally, PSA properties, i.e., tack, peel strength, and shear strength, simultaneously increase upon addition of both CNC types, although to different extents. The relationship between the PSA properties and CNC surface properties confirms that the less hydrophilic CNCs lead to improved CNC dispersion in the PSA films and therefore, enhance PSA properties.


Assuntos
Nanocompostos , Nanopartículas , Adesivos , Celulose , Interações Hidrofóbicas e Hidrofílicas
7.
Proc Natl Acad Sci U S A ; 117(43): 26766-26772, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33051299

RESUMO

Archaea swim using the archaellum (archaeal flagellum), a reversible rotary motor consisting of a torque-generating motor and a helical filament, which acts as a propeller. Unlike the bacterial flagellar motor (BFM), ATP (adenosine-5'-triphosphate) hydrolysis probably drives both motor rotation and filamentous assembly in the archaellum. However, direct evidence is still lacking due to the lack of a versatile model system. Here, we present a membrane-permeabilized ghost system that enables the manipulation of intracellular contents, analogous to the triton model in eukaryotic flagella and gliding Mycoplasma We observed high nucleotide selectivity for ATP driving motor rotation, negative cooperativity in ATP hydrolysis, and the energetic requirement for at least 12 ATP molecules to be hydrolyzed per revolution of the motor. The response regulator CheY increased motor switching from counterclockwise (CCW) to clockwise (CW) rotation. Finally, we constructed the torque-speed curve at various [ATP]s and discuss rotary models in which the archaellum has characteristics of both the BFM and F1-ATPase. Because archaea share similar cell division and chemotaxis machinery with other domains of life, our ghost model will be an important tool for the exploration of the universality, diversity, and evolution of biomolecular machinery.


Assuntos
Membrana Celular , Quimiotaxia/fisiologia , Haloferax volcanii , Modelos Biológicos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Flagelos/química , Flagelos/metabolismo , Haloferax volcanii/citologia , Haloferax volcanii/metabolismo , Cinética , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo
8.
Sci Rep ; 10(1): 15887, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985511

RESUMO

Most motile bacteria are propelled by rigid, helical, flagellar filaments and display distinct swimming patterns to explore their favorable environments. Escherichia coli cells have a reversible rotary motor at the base of each filament. They exhibit a run-tumble swimming pattern, driven by switching of the rotational direction, which causes polymorphic flagellar transformation. Here we report a novel swimming mode in E. coli ATCC10798, which is one of the original K-12 clones. High-speed tracking of single ATCC10798 cells showed forward and backward swimming with an average turning angle of 150°. The flagellar helicity remained right-handed with a 1.3 µm pitch and 0.14 µm helix radius, which is consistent with the feature of a curly type, regardless of motor switching; the flagella of ATCC10798 did not show polymorphic transformation. The torque and rotational switching of the motor was almost identical to the E. coli W3110 strain, which is a derivative of K-12 and a wild-type for chemotaxis. The single point mutation of N87K in FliC, one of the filament subunits, is critical to the change in flagellar morphology and swimming pattern, and lack of flagellar polymorphism. E. coli cells expressing FliC(N87K) sensed ascending a chemotactic gradient in liquid but did not spread on a semi-solid surface. Based on these results, we concluded that a flagellar polymorphism is essential for spreading in structured environments.


Assuntos
Quimiotaxia/fisiologia , Escherichia coli K12/fisiologia , Flagelos/fisiologia , Modelos Biológicos , Mutação
9.
Carbohydr Polym ; 246: 116651, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747283

RESUMO

Cationic and thermo-responsive polymer brushes were grafted from the surface of cellulose nanocrystals. Di(ethylene glycol) methyl ether methacrylate (MEO2MA) and poly(oligoethylene glycol) methyl ether acrylate (OEGMA300) and (2-methacryloyloxyethyl) trimethylammonium chloride (DMC) were grafted from cellulose nanocrystals (CNCs) via free radical polymerization. The CNC-g-POEGMA (CP) possessed a tunable lower critical solution temperature (LCST) of about 50 °C, and cloud point measurements confirmed that the LCST of the nanoparticles could be manipulated within the range of 40-47 °C by adjusting the DMC content. The salt effect was also investigated, and the results revealed a typical salting-out effect for the CNC-g-POEGMA after the introduction of KCl. On the other hand, the CNC-g-POEGMA-g-DMC (CPD) copolymers displayed two salt-responsive characteristics; polyelectrolyte effect at lower salt concentrations, followed by the salting-out effect at higher salt concentrations, which is dependent on the DMC content.

10.
Annu Rev Microbiol ; 74: 181-200, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32603624

RESUMO

The bacterial flagellar motor is the most complex structure in the bacterial cell, driving the ion-driven rotation of the helical flagellum. The ordered expression of the regulon and the assembly of the series of interacting protein rings, spanning the inner and outer membranes to form the ∼45-50-nm protein complex, have made investigation of the structure and mechanism a major challenge since its recognition as a rotating nanomachine about 40 years ago. Painstaking molecular genetics, biochemistry, and electron microscopy revealed a tiny electric motor spinning in the bacterial membrane. Over the last decade, new single-molecule and in vivo biophysical methods have allowed investigation of the stability of this and other large protein complexes, working in their natural environment inside live cells. This has revealed that in the bacterial flagellar motor, protein molecules in both the rotor and stator exchange with freely circulating pools of spares on a timescale of minutes, even while motors are continuously rotating. This constant exchange has allowed the evolution of modified components allowing bacteria to keep swimming as the viscosity or the ion composition of the outside environment changes.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Flagelos/genética , Flagelos/fisiologia , Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/química , Movimento
11.
Nat Commun ; 11(1): 2615, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457314

RESUMO

F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.


Assuntos
Proteínas de Escherichia coli/química , ATPases Translocadoras de Prótons/química , Difosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Lipídeos/química , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Rotação , Relação Estrutura-Atividade
12.
Carbohydr Polym ; 229: 115486, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826484

RESUMO

A facile and universal approach to prepare cellulose nanocrystal reinforced functional hydrogels is proposed. An organic solvent-free and eco-friendly method was adopted, where both the modification and polymerization were conducted in an aqueous solution. Cellulose nanocrystal (CNC) and sodium alginate (SA) were first oxidized under mild conditions to introduce aldehyde groups. Subsequently, amine-containing vinyl functionalized monomers were introduced to the surface of CNC or backbone of oxidized SA via a dynamic Schiff-base reaction. The bio-based hydrogels were then prepared via a one-pot in-situ polymerization, where the functional CNC and SA served as novel macro-cross-linkers that contributed to the structural integrity and mechanical stability of the hydrogels. The hydrogels displayed uniform chemical and macroscopic structures and could self-heal within several hours at room temperature. The design of specific monomers will allow the introduction of stimuli-responsive properties to the functional hydrogels and a chemically robust thermally-triggered actuator was demonstrated. Due to its flexible design and practical approach, the hydrogels could find potential uses in agricultural and pharmaceutical products.

13.
J R Soc Interface ; 16(159): 20190300, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31575345

RESUMO

The bacterial flagellar motor is an ion-powered transmembrane protein complex which drives swimming in many bacterial species. The motor consists of a cytoplasmic 'rotor' ring and a number of 'stator' units, which are bound to the cell wall of the bacterium. Recently, it has been shown that the number of functional torque-generating stator units in the motor depends on the external load, and suggested that mechanosensing in the flagellar motor is driven via a 'catch bond' mechanism in the motor's stator units. We present a method that allows us to measure-on a single motor-stator unit dynamics across a large range of external loads, including near the zero-torque limit. By attaching superparamagnetic beads to the flagellar hook, we can control the motor's speed via a rotating magnetic field. We manipulate the motor to four different speed levels in two different ion-motive force (IMF) conditions. This framework allows for a deeper exploration into the mechanism behind load-dependent remodelling by separating out motor properties, such as rotation speed and energy availability in the form of IMF, that affect the motor torque.


Assuntos
Bactérias , Proteínas de Bactérias , Flagelos , Modelos Biológicos , Proteínas Motores Moleculares , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flagelos/química , Flagelos/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo
14.
mSystems ; 4(5)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551402

RESUMO

Bacteria sense chemicals, surfaces, and other cells and move toward some and away from others. Studying how single bacterial cells in a population move requires sophisticated tracking and imaging techniques. We have established quantitative methodology for label-free imaging and tracking of individual bacterial cells simultaneously within the bulk liquid and at solid-liquid interfaces by utilizing the imaging modes of digital holographic microscopy (DHM) in three dimensions (3D), differential interference contrast (DIC), and total internal reflectance microscopy (TIRM) in two dimensions (2D) combined with analysis protocols employing bespoke software. To exemplify and validate this methodology, we investigated the swimming behavior of a Pseudomonas aeruginosa wild-type strain and isogenic flagellar stator mutants (motAB and motCD) within the bulk liquid and at the surface at the single-cell and population levels. Multiple motile behaviors were observed that could be differentiated by speed and directionality. Both stator mutants swam slower and were unable to adjust to the near-surface environment as effectively as the wild type, highlighting differential roles for the stators in adapting to near-surface environments. A significant reduction in run speed was observed for the P. aeruginosa mot mutants, which decreased further on entering the near-surface environment. These results are consistent with the mot stators playing key roles in responding to the near-surface environment.IMPORTANCE We have established a methodology to enable the movement of individual bacterial cells to be followed within a 3D space without requiring any labeling. Such an approach is important to observe and understand how bacteria interact with surfaces and form biofilm. We investigated the swimming behavior of Pseudomonas aeruginosa, which has two flagellar stators that drive its swimming motion. Mutants that had only either one of the two stators swam slower and were unable to adjust to the near-surface environment as effectively as the wild type. These results are consistent with the mot stators playing key roles in responding to the near-surface environment and could be used by bacteria to sense via their flagella when they are near a surface.

15.
ACS Omega ; 4(1): 2102-2110, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459458

RESUMO

ß-cyclodextrin (ß-CD) forms a host-guest inclusion complex with many organic and amphiphilic compounds found in pharmaceutical, textile, cosmetic, food, and personal care systems. Therefore, grafting of ß-CD onto a cellulose nanocrystal (CNC) offers a possible strategy to use functionalized CNC to complex with surface-active molecules. We have successfully grafted ß-CD onto CNCs in a stepwise manner using cyanuric chloride as the linker. The structure of ß-CD-grafted CNC (CNC-CD) was characterized by UV-vis and Fourier-transform infrared spectroscopy, and the grafting ratio of ß-CD was determined by the phenolphthalein inclusion protocol. Ionic surfactants induced the aggregation of CNC-CDs by forming inclusion complexes with ß-CDs on the surface of CNC. The interactions of amphiphilic compounds with CNC-CD were examined by surface tensiometry, conductometric and potentiometric titration, and isothermal titration calorimetry. Mechanisms describing the complex formation between surfactants and CNC-CD were proposed, where an improved understanding of CD interactions with surfactants and lipids would enable better strategies for drug encapsulation and delivery with CDs.

16.
Rev Sci Instrum ; 90(2): 023705, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831696

RESUMO

We present a transmission-mode digital holographic microscope that can switch easily between three different imaging modes: inline, dark field off-axis, and bright field off-axis. Our instrument can be used: to track through time in three dimensions microscopic dielectric objects, such as motile micro-organisms; localize brightly scattering nanoparticles, which cannot be seen under conventional bright field illumination; and recover topographic information and measure the refractive index and dry mass of samples via quantitative phase recovery. Holograms are captured on a digital camera capable of high-speed video recording of up to 2000 frames per second. The inline mode of operation can be easily configurable to a large range of magnifications. We demonstrate the efficacy of the inline mode in tracking motile bacteria in three dimensions in a 160 µm × 160 µm × 100 µm volume at 45× magnification. Through the use of a novel physical mask in a conjugate Fourier plane in the imaging path, we use our microscope for high magnification, dark field off-axis holography, demonstrated by localizing 100 nm gold nanoparticles at 225× magnification up to at least 16 µm from the imaging plane. Finally, the bright field off-axis mode facilitates quantitative phase microscopy, which we employ to measure the refractive index of a standard resolution test target and to measure the dry mass of human erythrocytes.

17.
J Colloid Interface Sci ; 538: 51-61, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30500467

RESUMO

HYPOTHESIS: Cellulose nanocrystals (CNCs) undergo precipitation in the presence of high concentrations of cationic surfactants in aqueous solutions. To avoid such behavior and/or to promote redispersion of CNC/surfactant mixtures, the CNC surface was grafted with poly di(ethylene oxide) methyl ether methacrylate, P(MEO2MA). EXPERIMENTS: CNC-g-P(MEO2MA) was characterized using the following techniques 13C solid-state nuclear magnetic resonance (13C SSNMR), Fourier-transform infrared spectroscopy - attenuated total reflection spectroscopy (FTIR-ATR) and thermal gravimetric analysis (TGA). Isothermal titration calorimetry (ITC), electrophoretic mobility, light scattering and high sensitivity differential scanning calorimetry (HSDSC) were used to study the interaction between CNC-g-P(MEO2MA) and ionic surfactants, dodecyltrimethylammonium bromide (C12TAB, cationic) and sodium dodecylsulfate (SDS, anionic) at temperatures below and above the LCST. FINDINGS: CNC-g-P(MEO2MA) underwent phase separation above its lower critical solution temperature (LCST ∼ 25 °C) and precipitated from solution as seen by HSDSC and transmittance experiments. When C12TAB was added to CNC-g-P(MEO2MA) it induced the precipitation that prevented the redispersion due to strong electrostatic interactions with the negative charges on the CNC surface. With increasing concentrations of SDS, the polymer phase transition temperature was increased, which can be used to redisperse the CNC complexes. By removing SDS from the mixture via dialysis, the CNC-g-P(MEO2MA) underwent subsequent phase transition.


Assuntos
Celulose/química , Metacrilatos/química , Éteres Metílicos/química , Nanopartículas/química , Polietilenoglicóis/química , Temperatura , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
ACS Omega ; 3(10): 12403-12411, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411008

RESUMO

A high-performance semiconductor zinc oxide (ZnO) on melamine formaldehyde-coated cellulose nanocrystals (MFCNCs) was synthesized and evaluated for its application in smart cosmetics. These ZnO@MFCNC hybrid nanostructures were evaluated for their in vitro sun protection factor performance and photocatalytic activity under simulated UV and solar radiation. The photodegradation kinetics of a model pigment (methylene blue) was fitted to the Langmuir-Hinshelwood model. A 4-fold increase in the photocatalytic activity of ZnO@MFCNCs was observed when compared to pure ZnO. This is associated with (i) increased specific surface area provided by the MFCNC template, (ii) confined surface energy and controlled growth of ZnO nanoparticles, and (iii) entrapment of photoinduced charge carriers in the pores of the core-shell MFCNC rod, followed by fast promotion of interfacial e-charge transfer to the surface of the catalyst. The present study demonstrates how an increase in photocatalytic activity can be engineered without the introduction of structural defects or band gap tailoring of the semiconductor. The aqueous-based ZnO@MFCNC hybrid system displayed attractive UV-absorption and photocatalytic characteristics, offering the conversion of this renewable and sustainable technology into intelligent cosmetic formulations.

19.
J Mol Biol ; 430(22): 4557-4579, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29959924

RESUMO

Over the past 50 years, protein complexes have been studied with techniques such as X-ray crystallography and electron microscopy, generating images which although detailed are static and homogeneous. More recently, limited application of in vivo fluorescence and other techniques has revealed that many complexes previously thought stable and compositionally uniform are dynamically variable, continually exchanging components with a freely circulating pool of "spares." Here, we consider the purpose and prevalence of protein exchange, first reviewing the ongoing story of exchange in the bacterial flagella motor, before surveying reports of exchange in complexes across all domains of life, together highlighting great diversity in timescales and functions. Finally, we put this in the context of high-throughput proteomic studies which hint that exchange might be the norm, rather than an exception.


Assuntos
Bactérias/metabolismo , Flagelos/metabolismo , Proteínas Motores Moleculares/metabolismo , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fluorescência , Proteínas Motores Moleculares/química , Proteômica
20.
J Vis Exp ; (134)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29683454

RESUMO

Detergents are indispensable for delivery of membrane proteins into 30-100 nm small unilamellar vesicles, while more complex, larger model lipid bilayers are less compatible with detergents. Here we describe a strategy for bypassing this fundamental limitation using fusogenic oppositely charged liposomes bearing a membrane protein of interest. Fusion between such vesicles occurs within 5 min in a low ionic strength buffer. Positively charged fusogenic liposomes can be used as simple shuttle vectors for detergent-free delivery of membrane proteins into biomimetic target lipid bilayers, which are negatively charged. We also show how to reconstitute membrane proteins into fusogenic proteoliposomes with a fast 30-min protocol. Combining these two approaches, we demonstrate a fast assembly of an electron transport chain consisting of two membrane proteins from E. coli, a primary proton pump bo3-oxidase and F1Fo ATP synthase, in membranes of vesicles of various sizes, ranging from 0.1 to >10 microns, as well as ATP production by this chain.


Assuntos
Detergentes/uso terapêutico , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA