Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(3): 030503, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905339

RESUMO

Phase estimation is a quantum algorithm for measuring the eigenvalues of a Hamiltonian. We propose and rigorously analyze a randomized phase estimation algorithm with two distinctive features. First, our algorithm has complexity independent of the number of terms L in the Hamiltonian. Second, unlike previous L-independent approaches, such as those based on qDRIFT, all algorithmic errors in our method can be suppressed by collecting more data samples, without increasing the circuit depth.

2.
Commun Math Phys ; 384(3): 1709-1750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776522

RESUMO

Recent understanding of the thermodynamics of small-scale systems have enabled the characterization of the thermodynamic requirements of implementing quantum processes for fixed input states. Here, we extend these results to construct optimal universal implementations of a given process, that is, implementations that are accurate for any possible input state even after many independent and identically distributed (i.i.d.) repetitions of the process. We find that the optimal work cost rate of such an implementation is given by the thermodynamic capacity of the process, which is a single-letter and additive quantity defined as the maximal difference in relative entropy to the thermal state between the input and the output of the channel. Beyond being a thermodynamic analogue of the reverse Shannon theorem for quantum channels, our results introduce a new notion of quantum typicality and present a thermodynamic application of convex-split methods.

3.
Phys Rev Lett ; 122(20): 200601, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172741

RESUMO

Thermodynamics imposes restrictions on what state transformations are possible. In the macroscopic limit of asymptotically many independent copies of a state-as for instance in the case of an ideal gas-the possible transformations become reversible and are fully characterized by the free energy. In this Letter, we present a thermodynamic resource theory for quantum processes that also becomes reversible in the macroscopic limit, a property that is especially rare for a resource theory of quantum channels. We identify a unique single-letter and additive quantity, the thermodynamic capacity, that characterizes the "thermodynamic value" of a quantum channel, in the sense that the work required to simulate many repetitions of a quantum process employing many repetitions of another quantum process becomes equal to the difference of the respective thermodynamic capacities. On a technical level, we provide asymptotically optimal constructions of universal implementations of quantum processes. A challenging aspect of this construction is the apparent necessity to coherently combine thermal engines that would run in different thermodynamic regimes depending on the input state. Our results have applications in quantum Shannon theory by providing a generalized notion of quantum typical subspaces and by giving an operational interpretation to the entropy difference of a channel.

4.
Phys Rev Lett ; 121(19): 190503, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30468618

RESUMO

We show that the minimal rate of noise needed to catalytically erase the entanglement in a bipartite quantum state is given by the regularized relative entropy of entanglement. This offers a solution to the central open question raised in [Groisman et al., Phys. Rev. A 72, 032317 (2005)PLRAAN1050-294710.1103/PhysRevA.72.032317] and complements their main result that the minimal rate of noise needed to erase all correlations is given by the quantum mutual information. We extend our discussion to the tripartite setting where we show that an asymptotic rate of noise given by the regularized relative entropy of recovery is sufficient to catalytically transform the state to a locally recoverable version of the state.

5.
Phys Rev Lett ; 121(4): 040504, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30095941

RESUMO

Insights from quantum information theory show that correlation measures based on quantum entropy are fundamental tools that reveal the entanglement structure of multipartite states. In that spirit, Groisman, Popescu, and Winter [Phys. Rev. A 72, 032317 (2005)PLRAAN1050-294710.1103/PhysRevA.72.032317] showed that the quantum mutual information I(A;B) quantifies the minimal rate of noise needed to erase the correlations in a bipartite state of quantum systems AB. Here, we investigate correlations in tripartite systems ABE. In particular, we are interested in the minimal rate of noise needed to apply to the systems AE in order to erase the correlations between A and B given the information in system E, in such a way that there is only negligible disturbance on the marginal BE. We present two such models of conditional decoupling, called deconstruction and conditional erasure cost of tripartite states ABE. Our main result is that both are equal to the conditional quantum mutual information I(A;B|E)-establishing it as an operational measure for tripartite quantum correlations.

6.
Phys Rev Lett ; 118(8): 080503, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28282182

RESUMO

The decoupling technique is a fundamental tool in quantum information theory with applications ranging from thermodynamics to many-body physics and black hole radiation whereby a quantum system is decoupled from another one by discarding an appropriately chosen part of it. Here, we introduce catalytic decoupling, i.e., decoupling with the help of an independent system. Thereby, we remove a restriction on the standard decoupling notion and present a tight characterization in terms of the max-mutual information. The novel notion unifies various tasks and leads to a resource theory of decoupling.

7.
Phys Rev Lett ; 119(12): 120501, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29341649

RESUMO

Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.

8.
Nat Commun ; 7: 11419, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27156995

RESUMO

The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances.

10.
Montevideo; El Toboso; 2003. 127 p. (Psicoterapia abierta).
Monografia em Espanhol | LILACS, UY-BNMED, BNUY | ID: biblio-1411387
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA