Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Microbiol Spectr ; 12(5): e0362823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497714

RESUMO

During the SARS-CoV-2 pandemic, many countries directed substantial resources toward genomic surveillance to detect and track viral variants. There is a debate over how much sequencing effort is necessary in national surveillance programs for SARS-CoV-2 and future pandemic threats. We aimed to investigate the effect of reduced sequencing on surveillance outcomes in a large genomic data set from Switzerland, comprising more than 143k sequences. We employed a uniform downsampling strategy using 100 iterations each to investigate the effects of fewer available sequences on the surveillance outcomes: (i) first detection of variants of concern (VOCs), (ii) speed of introduction of VOCs, (iii) diversity of lineages, (iv) first cluster detection of VOCs, (v) density of active clusters, and (vi) geographic spread of clusters. The impact of downsampling on VOC detection is disparate for the three VOC lineages, but many outcomes including introduction and cluster detection could be recapitulated even with only 35% of the original sequencing effort. The effect on the observed speed of introduction and first detection of clusters was more sensitive to reduced sequencing effort for some VOCs, in particular Omicron and Delta, respectively. A genomic surveillance program needs a balance between societal benefits and costs. While the overall national dynamics of the pandemic could be recapitulated by a reduced sequencing effort, the effect is strongly lineage-dependent-something that is unknown at the time of sequencing-and comes at the cost of accuracy, in particular for tracking the emergence of potential VOCs.IMPORTANCESwitzerland had one of the most comprehensive genomic surveillance systems during the COVID-19 pandemic. Such programs need to strike a balance between societal benefits and program costs. Our study aims to answer the question: How would surveillance outcomes have changed had we sequenced less? We find that some outcomes but also certain viral lineages are more affected than others by sequencing less. However, sequencing to around a third of the original effort still captured many important outcomes for the variants of concern such as their first detection but affected more strongly other measures like the detection of first transmission clusters for some lineages. Our work highlights the importance of setting predefined targets for a national genomic surveillance program based on which sequencing effort should be determined. Additionally, the use of a centralized surveillance platform facilitates aggregating data on a national level for rapid public health responses as well as post-analyses.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/diagnóstico , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/classificação , Suíça/epidemiologia , Genoma Viral/genética , Monitoramento Epidemiológico , Pandemias , Filogenia
2.
Nat Aging ; 3(12): 1509-1520, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012287

RESUMO

The induction of cellular reprogramming via expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM) can drive dedifferentiation of somatic cells and ameliorate age-associated phenotypes in multiple tissues and organs. However, the benefits of long-term in vivo reprogramming are limited by detrimental side-effects. Here, using complementary genetic approaches, we demonstrated that continuous induction of the reprogramming factors in vivo leads to hepatic and intestinal dysfunction resulting in decreased body weight and contributing to premature death (within 1 week). By generating a transgenic reprogrammable mouse strain, avoiding OSKM expression in both liver and intestine, we reduced the early lethality and adverse effects associated with in vivo reprogramming and induced a decrease in organismal biological age. This reprogramming mouse strain, which allows longer-term continuous induction of OSKM with attenuated toxicity, can help better understand rejuvenation, regeneration and toxicity during in vivo reprogramming.


Assuntos
Insuficiência Intestinal , Camundongos , Animais , Mortalidade Prematura , Reprogramação Celular/genética , Fatores de Transcrição/genética , Camundongos Transgênicos , Fígado/metabolismo
3.
BMC Infect Dis ; 23(1): 537, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596518

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a multifaceted disease potentially responsible for various clinical manifestations including gastro-intestinal symptoms. Several evidences suggest that the intestine is a critical site of immune cell development, gut microbiota could therefore play a key role in lung immune response. We designed a monocentric longitudinal observational study to describe the gut microbiota profile in COVID-19 patients and compare it to a pre-existing cohort of ventilated non-COVID-19 patients. METHODS: From March to December 2020, we included patients admitted for COVID-19 in medicine (43 not ventilated) or intensive care unit (ICU) (14 ventilated) with a positive SARS-CoV-2 RT-PCR assay in a respiratory tract sample. 16S metagenomics was performed on rectal swabs from these 57 COVID-19 patients, 35 with one and 22 with multiple stool collections. Nineteen non-COVID-19 ICU controls were also enrolled, among which 14 developed ventilator-associated pneumonia (pneumonia group) and five remained without infection (control group). SARS-CoV-2 viral loads in fecal samples were measured by qPCR. RESULTS: Although similar at inclusion, Shannon alpha diversity appeared significantly lower in COVID-19 and pneumonia groups than in the control group at day 7. Furthermore, the microbiota composition became distinct between COVID-19 and non-COVID-19 groups. The fecal microbiota of COVID-19 patients was characterized by increased Bacteroides and the pneumonia group by Prevotella. In a distance-based redundancy analysis, only COVID-19 presented significant effects on the microbiota composition. Moreover, patients in ICU harbored increased Campylobacter and decreased butyrate-producing bacteria, such as Lachnospiraceae, Roseburia and Faecalibacterium as compared to patients in medicine. Both the stay in ICU and patient were significant factors affecting the microbiota composition. SARS-CoV-2 viral loads were higher in ICU than in non-ICU patients. CONCLUSIONS: Overall, we identified distinct characteristics of the gut microbiota in COVID-19 patients compared to control groups. COVID-19 patients were primarily characterized by increased Bacteroides and decreased Prevotella. Moreover, disease severity showed a negative correlation with butyrate-producing bacteria. These features could offer valuable insights into potential targets for modulating the host response through the microbiota and contribute to a better understanding of the disease's pathophysiology. TRIAL REGISTRATION: CER-VD 2020-00755 (05.05.2020) & 2017-01820 (08.06.2018).


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , SARS-CoV-2 , Bacteroides , Butiratos
4.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37171846

RESUMO

The Swiss Pathogen Surveillance Platform (SPSP) is a shared secure surveillance platform between human and veterinary medicine, to also include environmental and foodborne isolates. It enables rapid and detailed transmission monitoring and outbreak surveillance of pathogens using whole genome sequencing data and associated metadata. It features controlled data access, complex dynamic queries, dedicated dashboards and automated data sharing with international repositories, providing actionable results for public health and the vision to improve societal well-being and health.


Assuntos
Genoma Bacteriano , Saúde Única , Humanos , Suíça/epidemiologia , Metadados , Genômica/métodos
5.
Sci Transl Med ; 15(680): eabn7979, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346321

RESUMO

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020-the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrasted these estimates with simple null models representing the absence of certain public health measures. We show that Switzerland's border closures decoupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86 to 98% reduction in introductions during Switzerland's strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Last, we quantified local transmission dynamics once introductions into Switzerland occurred using a phylodynamic model. We found that transmission slowed 35 to 63% upon outbreak detection in summer 2020 but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Saúde Pública , Suíça/epidemiologia , Controle de Doenças Transmissíveis , Genoma Viral/genética , Filogenia
7.
Front Public Health ; 10: 1016169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568782

RESUMO

Background: The need for effective public health surveillance systems to track virus spread for targeted interventions was highlighted during the COVID-19 pandemic. It spurred an interest in the use of spatiotemporal clustering and genomic analyses to identify high-risk areas and track the spread of the SARS-CoV-2 virus. However, these two approaches are rarely combined in surveillance systems to complement each one's limitations; spatiotemporal clustering approaches usually consider only one source of virus transmission (i.e., the residential setting) to detect case clusters, while genomic studies require significant resources and processing time that can delay decision-making. Here, we clarify the differences and possible synergies of these two approaches in the context of infectious disease surveillance systems by investigating to what extent geographically-defined clusters are confirmed as transmission clusters based on genome sequences, and how genomic-based analyses can improve the epidemiological investigations associated with spatiotemporal cluster detection. Methods: For this purpose, we sequenced the SARS-CoV-2 genomes of 172 cases that were part of a collection of spatiotemporal clusters found in a Swiss state (Vaud) during the first epidemic wave. We subsequently examined intra-cluster genetic similarities and spatiotemporal distributions across virus genotypes. Results: Our results suggest that the congruence between the two approaches might depend on geographic features of the area (rural/urban) and epidemic context (e.g., lockdown). We also identified two potential superspreading events that started from cases in the main urban area of the state, leading to smaller spreading events in neighboring regions, as well as a large spreading in a geographically-isolated area. These superspreading events were characterized by specific mutations assumed to originate from Mulhouse and Milan, respectively. Our analyses propose synergistic benefits of using two complementary approaches in public health surveillance, saving resources and improving surveillance efficiency.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Pandemias , Controle de Doenças Transmissíveis , Genômica , Análise por Conglomerados
8.
Antiviral Res ; 208: 105452, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341734

RESUMO

SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modeling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.


Assuntos
Tratamento Farmacológico da COVID-19 , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/química , RNA Viral/metabolismo
9.
Antibiotics (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36289980

RESUMO

Background: Staphylococcus aureus is the main cause of haematogenous prosthetic joint infections (PJI). We aimed to describe the prevalence and factors associated with PJI in patients with documented S. aureus bacteraemia. Methods: Adult patients with S. aureus bacteraemia and presence of prosthetic joint hospitalized in Lausanne University Hospital during a seven-year period (2015−2021) were included. Results: Among 135 patients with S. aureus bacteraemia and prosthetic joints, 38 (28%) had PJI. Multivariate analysis revealed that the presence of PJI was associated with knee arthroplasty (P 0.029; aOR 3.00, 95% CI 1.12−8.05), prior arthroplasty revision (P 0.034; aOR 3.59, 95% CI 1.10−11.74), community-acquired bacteraemia (P 0.005; aOR 4.74, 95% CI 1.61−14.01) and age < 70 years (P 0.007; aOR 9.39, 95% CI 1.84−47.85). Conclusions: PJI was common among patients with documented S. aureus bacteraemia. PJI was associated with characteristics of the prosthesis, such as prior arthroplasty revisions and knee prosthesis.

10.
Br J Haematol ; 199(4): 549-559, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36101920

RESUMO

Administration of plasma therapy may contribute to viral control and survival of COVID-19 patients receiving B-cell-depleting agents that impair humoral immunity. However, little is known on the impact of anti-CD20 pre-exposition on the kinetics of SARS-CoV-2-specific antibodies. Here, we evaluated the relationship between anti-spike immunoglobulin G (IgG) kinetics and the clinical status or intra-host viral evolution after plasma therapy in 36 eligible hospitalized COVID-19 patients, pre-exposed or not to B-cell-depleting treatments. The majority of anti-CD20 pre-exposed patients (14/17) showed progressive declines of anti-spike IgG titres following plasma therapy, contrasting with the 4/19 patients who had not received B-cell-depleting agents (p = 0.0006). Patients with antibody decay also depicted prolonged clinical symptoms according to the World Health Organization (WHO) severity classification (p = 0.0267) and SARS-CoV-2 viral loads (p = 0.0032) before complete virus clearance. Moreover, they had higher mutation rates than patients able to mount an endogenous humoral response (p = 0.015), including three patients with one to four spike mutations, potentially associated with immune escape. No relevant differences were observed between patients treated with plasma from convalescent and/or mRNA-vaccinated donors. Our study emphasizes the need for an individualized clinical care and follow-up in the management of COVID-19 patients with B-cell lymphopenia.


Assuntos
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Formação de Anticorpos , Imunização Passiva , Anticorpos Antivirais , Imunoglobulina G
11.
Microb Genom ; 8(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584003

RESUMO

Outbreaks of virulent and/or drug-resistant bacteria have a significant impact on human health and major economic consequences. Genomic islands (GIs; defined as clusters of genes of probable horizontal origin) are of high interest because they disproportionately encode virulence factors, some antimicrobial-resistance (AMR) genes, and other adaptations of medical or environmental interest. While microbial genome sequencing has become rapid and inexpensive, current computational methods for GI analysis are not amenable for rapid, accurate, user-friendly and scalable comparative analysis of sets of related genomes. To help fill this gap, we have developed IslandCompare, an open-source computational pipeline for GI prediction and comparison across several to hundreds of bacterial genomes. A dynamic and interactive visualization strategy displays a bacterial core-genome phylogeny, with bacterial genomes linearly displayed at the phylogenetic tree leaves. Genomes are overlaid with GI predictions and AMR determinants from the Comprehensive Antibiotic Resistance Database (CARD), and regions of similarity between the genomes are also displayed. GI predictions are performed using Sigi-HMM and IslandPath-DIMOB, the two most precise GI prediction tools based on nucleotide composition biases, as well as a novel blast-based consistency step to improve cross-genome prediction consistency. GIs across genomes sharing sequence similarity are grouped into clusters, further aiding comparative analysis and visualization of acquisition and loss of mobile GIs in specific sub-clades. IslandCompare is an open-source software that is containerized for local use, plus available via a user-friendly, web-based interface to allow direct use by bioinformaticians, biologists and clinicians (at https://islandcompare.ca).


Assuntos
Genoma Bacteriano , Ilhas Genômicas , Bactérias/genética , Surtos de Doenças , Ilhas Genômicas/genética , Humanos , Filogenia
12.
bioRxiv ; 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35291297

RESUMO

SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modelling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.

13.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757834

RESUMO

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Laboratórios , Laboratórios Clínicos , Projetos Piloto
14.
J Cyst Fibros ; 21(2): e158-e164, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34756681

RESUMO

BACKGROUND: Various bacterial and viral assemblages composing Cystic Fibrosis (CF) lung microbiota contribute to long-term lung function decline over time. Yet, the impact of individual microorganisms on pulmonary functions remains uncertain in children with CF. METHODS: As part of the 'Mucoviscidosis, respiratory VIruses, intracellular Bacteria and fastidious organisms'' project, children with CF were longitudinally followed in a Swiss multicentric study. Respiratory samples included mainly throat swabs and sputa samples for bacterial culture and 16S rRNA metagenomics and nasopharyngeal swabs for respiratory virus detection by molecular assays. Percentage of predicted Forced Expiratory Volume in one second (FEV1%) and Lung Clearance Index (LCI) were recorded. RESULTS: Sixty-one children, of whom 20 (32.8%) presented with at least one pulmonary exacerbation, were included. Almost half of the 363 nasopharyngeal swabs tested by RT-PCR were positive for a respiratory virus, mainly rhinovirus (26.5%). From linear mixed-effects regression models, P. aeruginosa (-11.35, 95%CI [-17.90; -4.80], p = 0.001) was significantly associated with a decreased FEV1%, whereas rhinovirus was associated with a significantly higher FEV1% (+4.24 95%CI [1.67; 6.81], p = 0.001). Compared to conventional culture, 16S rRNA metagenomics showed a sensitivity and specificity of 80.0% and 85.4%, respectively for detection of typical CF pathogens. However, metagenomics detected a bacteria almost twice more often than culture. CONCLUSIONS: As expected, P. aeruginosa impacted negatively on FEV1% while rhinovirus was surprisingly associated with better FEV1%. Culture-free assays identifie significantly more pathogens than standard culture, with disputable clinical correlation.


Assuntos
Fibrose Cística , Bactérias , Criança , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Fibrose Cística/microbiologia , Volume Expiratório Forçado , Humanos , Pulmão , Pseudomonas aeruginosa , RNA Ribossômico 16S/genética , Rhinovirus
15.
Crit Rev Microbiol ; 48(3): 356-375, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34752719

RESUMO

Extensive characterization of the human microbiota has revealed promising relationships between microbial composition and health or disease, generating interest in biomarkers derived from microbiota profiling. However, microbiota complexity and technical challenges strongly influencing the results limit the generalization of microbiota profiling and question its clinical utility. In addition, no quality management scheme has been adapted to the specificities of microbiota profiling, notably due to the heterogeneity in methods and results. In this review, we discuss possible adaptation of classical quality management tools routinely used in diagnostic laboratories to microbiota profiling and propose a specific framework. Multiple quality controls are needed to cover all steps, from sampling to data processing. Standard operating procedures, primarily developed for wet lab analyses, must be adapted to the use of bioinformatic tools. Finally, requirements for test validation and proficiency testing must take into account expected discrepancies in results due to the heterogeneity of the processes. The proposed quality management framework should support the implementation of routine microbiota profiling by clinical laboratories to support patient care. Furthermore, its use in research laboratories would improve publication reproducibility as well as transferability of methods and results to routine practice.


Assuntos
Metagenômica , Microbiota , Humanos , Metagenômica/métodos , Reprodutibilidade dos Testes
16.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680054

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing an unprecedented pandemic. Although vaccines and antivirals are limiting the spread, SARS-CoV-2 is still under selective pressure in human and animal populations, as demonstrated by the emergence of variants of concern. To better understand the driving forces leading to new subtypes of SARS-CoV-2, we infected an ex vivo cell model of the human upper respiratory tract with Alpha and Omicron BA.1 variants for one month. Although viral RNA was detected during the entire course of the infection, infectious virus production decreased over time. Sequencing analysis did not show any adaptation in the spike protein, suggesting a key role for the adaptive immune response or adaptation to other anatomical sites for the evolution of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Antivirais , Nariz , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Traqueia , Evolução Molecular
17.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960786

RESUMO

Neonatal COVID-19 is rare and mainly results from postnatal transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, can infect the placenta and compromise its function. We present two cases of decreased fetal movements and abnormal fetal heart rhythm 5 days after mild maternal COVID-19, requiring emergency caesarean section at 29 + 3 and 32 + 1 weeks of gestation, and leading to brain injury. Placental examination revealed extensive and multifocal chronic intervillositis, with intense cytoplasmic positivity for SARS-CoV-2 spike antibody and SARS-CoV-2 detection by RT-qPCR. Vertical transmission was confirmed in one case, and both neonates developed extensive cystic peri-ventricular leukomalacia.


Assuntos
Lesões Encefálicas/etiologia , COVID-19/complicações , Placenta/virologia , Complicações Infecciosas na Gravidez/virologia , Adulto , Lesões Encefálicas/patologia , COVID-19/fisiopatologia , COVID-19/virologia , Cesárea , Feminino , Movimento Fetal , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Transmissão Vertical de Doenças Infecciosas , Leucomalácia Periventricular/etiologia , Leucomalácia Periventricular/patologia , Placenta/patologia , Gravidez , Complicações Infecciosas na Gravidez/fisiopatologia , SARS-CoV-2/isolamento & purificação
18.
J Clin Microbiol ; 59(10): e0094421, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34319802

RESUMO

Although many laboratories worldwide have developed their sequencing capacities in response to the need for SARS-CoV-2 genome-based surveillance of variants, only a few reported some quality criteria to ensure sequence quality before lineage assignment and submission to public databases. Hence, we aimed here to provide simple quality control criteria for SARS-CoV-2 sequencing to prevent erroneous interpretation of low-quality or contaminated data. We retrospectively investigated 647 SARS-CoV-2 genomes obtained over 10 tiled amplicons sequencing runs. We extracted 26 potentially relevant metrics covering the entire workflow from sample selection to bioinformatics analysis. Based on data distribution, critical values were established for 11 selected metrics to prompt further quality investigations for problematic samples, in particular those with a low viral RNA quantity. Low-frequency variants (<70% of supporting reads) can result from PCR amplification errors, sample cross contaminations, or presence of distinct SARS-CoV2 genomes in the sample sequenced. The number and the prevalence of low-frequency variants can be used as a robust quality criterion to identify possible sequencing errors or contaminations. Overall, we propose 11 metrics with fixed cutoff values as a simple tool to evaluate the quality of SARS-CoV-2 genomes, among which are cycle thresholds, mean depth, proportion of genome covered at least 10×, and the number of low-frequency variants combined with mutation prevalence data.


Assuntos
COVID-19 , SARS-CoV-2 , Genoma Viral , Humanos , RNA Viral , Estudos Retrospectivos
19.
Nutrients ; 13(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205926

RESUMO

The gut microbiota adapts to age-related changes in host physiology but is also affected by environmental stimuli, like diet. As a source of both pre- and probiotics, dairy and fermented foods modulate the gut microbiota composition, which makes them interesting food groups to use for the investigation of interactions between diet and ageing. Here we present the effects of excluding dairy products and limiting fermented food consumption for 19 days on gut microbiota composition and circulating metabolites of 28 healthy, young (YA) and older (OA) adult men. The intervention affected gut microbial composition in both groups, with significant increases in Akkermansia muciniphila and decreases in bacteria of the Clostridiales order. Lower fasting levels of glucose and insulin, as well as dairy-associated metabolites like lactose and pentadecanoic acid, were observed after the intervention, with no effect of age. The intervention also decreased HDL and LDL cholesterol levels. Dairy fat intake was positively associated with the HDL cholesterol changes but not with the LDL/HDL ratio. In conclusion, restricting the intake of dairy and fermented foods in men modified their gut microbiota and blood metabolites, while the impact of the dietary restrictions on these outcomes was more marked than the effect of age.


Assuntos
Laticínios , Dieta , Alimentos Fermentados , Microbioma Gastrointestinal/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias , HDL-Colesterol , Ácidos Graxos , Ácidos Graxos não Esterificados , Fezes/microbiologia , Humanos , Lipídeos , Probióticos , Adulto Jovem
20.
J Infect Prev ; 22(4): 173-176, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295379

RESUMO

The recent increase of migration to Europe represents a risk of increased the prevalence of multidrug-resistant (MDR) bacteria. We conducted a cross-sectional study among asylum seekers admitted at two hospitals in Switzerland. Of the 59 patients included, 9 (14%) were colonised by a MDR bacteria, including 5 (8.5%) methicilin-resistant Staphylococcus aureus (MRSA) and 4 (6.8%) extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. No patient carried both ESBL-producing bacteria and MRSA. None of the patients carried a vancomycin-resistant Enterococcus (VRE) or a carbapenem-resistant Enterobacteriaceae (CRE). Colonisation with MDR bacteria was not associated with hospitalisation abroad or recent arrival in Switzerland. Whole genome sequencing analysis allowed us to exclude transmission between patients. The prevalence of MDR bacteria carriage is moderate among asylum seekers in western Switzerland. Further surveillance studies are necessary to determine if there is a risk of dissemination of pathogens into the local population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA