RESUMO
A direct, efficient, and highly chemoselective synthesis of saturated alcohols through one-pot sequential 1,4- and 1,2-reduction of cyclic and acyclic conjugated ketones is reported. The saturated alcohols are obtained in very good yields using sodium borohydride (NaBH4) as a reducing agent and a catalytic amount of copper(I) cyanide (CuCN) in ethanol as a green solvent. This nontoxic solvent significantly favors full 1,4-reduction, as opposed to methanol. Selectivity is further enhanced by the combination of two additives (a lithium salt or a sodium salt, such as NaI).
RESUMO
During the last decade, the evidence for the biological relevance of i-motif DNA (i-DNA) has been accumulated. However, relatively few molecules were reported to interact with i-DNA, and a controversy concerning their binding mode, affinity, and selectivity persists in the literature. In this context, the cholestane derivative IMC-48 has been reported to modulate bcl-2 gene expression by stabilizing an i-motif structure in its promoter. In the present contribution, we report on a novel, more straightforward, synthesis of IMC-48 requiring fewer steps compared to the previous approach. Furthermore, the interaction of IMC-48 with four different i-motif DNA sequences was thoroughly investigated by bio-layer interferometry (BLI) and circular dichroism (CD) spectroscopy. Surprisingly, our results show that IMC-48 is a very weak ligand of i-DNA as no quantifiable interaction or significant stabilization of i-motif structures could be observed, stimulating a quest for an alternative mechanism of its biological activity.
Assuntos
Colestanos , DNA , Sequência de Bases , DNA/genética , DNA/química , Piperidinas/química , Colestanos/química , Dicroísmo Circular , LigantesRESUMO
The sterically hindered bis(phenol)-dipyrrin ligands HLH3 and PhLH3 were reacted with 1 equiv of copper(II) under ambient conditions to produce the copper radical complexes [Cu(HL)] and [Cu(PhL)]. Their X-ray crystal structures show relatively short C-O bond distances (mean bond distances of 1.287 and 1.291 Å), reminiscent of mixed pyrrolyl-phenoxyl radical species. Complexes [Cu(HL)] and [Cu(PhL)] exhibit rich electronic spectra, with an intense near-IR (NIR) band (ε > 6 mM-1 cm-1) at 1346 and 1321 nm, respectively, assigned to a ligand-to-ligand charger-transfer transition. Both show a reversible oxidation wave ( E1/21,ox = 0.05 and 0.04 V), as well as a reversible reduction wave ( E1/21,red = -0.40 and -0.56 V versus ferrocenium/ferrocene, respectively). The cations ([Cu(HL)]+ and [Cu(PhL)]+) and anions ([Cu(HL)]- and [Cu(PhL)]-) were generated. They all display an axial ( S = 1/2) signal with a copper hyperfine structure in their electron paramagnetic resonance spectra, consistent with ligand-centered redox processes in both reduction and oxidation. Complex [Cu(HL)](SbF6) was cocrystallized with [Cu(HL)]. Oxidation is accompanied by a slight contraction of both the C-O bonds (mean bond distance of 1.280 Å) and the C-C bonds connecting the peripheral rings to the dipyrrin. The cations show vis-NIR bands of up to 1090 nm due to their quinoidal nature. The anions do not show a significant band above 700 nm, in agreement with their bis(phenolate)-dipyrrin character. The radical complexes efficiently catalyze the aerobic oxidation of benzyl alcohol, 1-phenylethanol, and unactivated 2-phenylethanol in basic conditions.
RESUMO
Three copper(II) complexes of the (R,R)-N,N'-bis(3,5-di-tert-butyl-2-aminobenzylidene)-1,2-diaminocyclohexane ligand, namely [Cu(N L)], [Cu(N LH)]+ and [Cu(N LH2 )]2+ , were prepared and structurally characterized. In [Cu(N LH2 )]2+ the copper ion lies in an octahedral geometry with the aniline groups coordinated in equatorial positions. In [Cu(N L)] the anilines are deprotonated (anilido moieties) and coordinated to an almost square-planar metal ion. Complex [Cu(N L)] displays two oxidation waves at E1/2ox, 1 =-0.14â V and E1/2ox, 2 =0.36â V vs. Fc+ /Fc in CH2 Cl2 . Complex [Cu(N LH2 )]2+ displays an irreversible oxidation wave at high potential (1.21â V), but shows a readily accessible and reversible metal-centered reduction at E1/2red =-0.67â V (CuII /CuI redox couple). Oxidation of [Cu(N L)] by AgSbF6 produces [Cu(N L)](SbF6 ), which was isolated as single crystals. X-ray structure analysis discloses a contraction of the coordination sphere by 0.05â Å upon oxidation, supporting a metal-centered process. Complex [Cu(N L)](SbF6 ) displays an intense NIR band at 1260â nm corresponding to an anilido-to-copper(III) charge transfer transition. This compound slowly evolves in CH2 Cl2 solution towards [Cu(N LH)](SbF6 ), which is a copper(II) complex comprised of both anilido and aniline groups coordinated to the metal center. The copper(III) complex [Cu(N L)](SbF6 ) is an efficient catalyst for benzyl alcohol oxidation, with 236â TON in 24â h at 298â K, without additives other than oxygen and a base.
RESUMO
The lipase-catalysed resolution of alcohols and amines yields only 50 % of the desired enantiopure product. However, addition of a racemisation catalyst leads to 100 % yield in what is called a dynamic kinetic resolution (DKR). There is a need for new racemisation catalysts that are fast and compatible with the conditions of the enzymatic reaction. We show that cationic half-sandwich ruthena- and iridacycle complexes are highly active and efficient in the racemisation of chiral alcohols and amines. Upon activation with base, these complexes are able to selectively racemise alcohols, whereas the non-activated complexes are selective catalysts for the racemisation of amines. We have applied the iridacycles in the DKR of racemic beta-chloroalcohols to produce chiral epoxides in a biphasic system in good yields and high ee (ee=enantiomeric excess).
Assuntos
Álcoois/química , Aminas/química , Irídio/química , Compostos Organometálicos/química , Rutênio/química , Catálise , Cinética , EstereoisomerismoRESUMO
A mild and efficient process for the direct-type catalytic allylation of sulfonylimidates has been developed; this reaction represents the first example of Brønsted base-catalysed, in situ generation and use of alpha-alkyl enolates in substitution reactions; the success of this methodology stems from the tunable alpha-proton acidity and nucleophilicity of sulfonylimidates, which could be harnessed in the realization of a broader range of catalytic direct-type reactions using ester equivalents as nucleophiles.
Assuntos
Ácidos Carboxílicos/química , Imidoésteres/química , Paládio/química , Sulfonas/química , Alquilação , Catálise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Difração de Raios X , alfa-Ciclodextrinas/químicaRESUMO
The direct chemo-enzymatic DKR of racemic beta-haloalcohols is reported, yielding the corresponding optically active epoxides in a single step. The mutant haloalcohol dehalogenase HheC Cys153Ser Trp249Phe is used for the asymmetric ring closure, whereas racemization of the remaining enantiomer of the haloalcohol is achieved using the new iridacycle 3, one of the most effective racemization catalysts to date for beta-haloalcohols.
Assuntos
Álcoois/química , Compostos de Epóxi/química , Halogênios/química , Catálise , Ciclização , Cinética , Estrutura Molecular , EstereoisomerismoRESUMO
The cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)-cyclopentane-[PdCl(eta3-C3H5)]2 system catalyses the coupling of aryl halides with alkynes with very high ratios of substrates-catalyst in good yields; a turnover number of 2600000 can be obtained for the reaction of 4-trifluoromethylbromobenzene with phenylacetylene in the presence of this catalyst.