Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Amino Acids ; 55(9): 1103-1119, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37389729

RESUMO

Hemorrhage induced by snake venom metalloproteases (SVMPs) results from proteolysis, capillary disruption, and blood extravasation. HF3, a potent SVMP of Bothrops jararaca, induces hemorrhage at pmol doses in the mouse skin. To gain insight into the hemorrhagic process, the main goal of this study was to analyze changes in the skin peptidome generated by injection of HF3, using approaches of mass spectrometry-based untargeted peptidomics. The results revealed that the sets of peptides found in the control and HF3-treated skin samples were distinct and derived from the cleavage of different proteins. Peptide bond cleavage site identification in the HF3-treated skin showed compatibility with trypsin-like serine proteases and cathepsins, suggesting the activation of host proteinases. Acetylated peptides, which originated from the cleavage at positions in the N-terminal region of proteins in both samples, were identified for the first time in the mouse skin peptidome. The number of peptides acetylated at the residue after the first Met residue, mostly Ser and Ala, was higher than that of peptides acetylated at the initial Met. Proteins cleaved in the hemorrhagic skin participate in cholesterol metabolism, PPAR signaling, and in the complement and coagulation cascades, indicating the impairment of these biological processes. The peptidomic analysis also indicated the emergence of peptides with potential biological activities, including pheromone, cell penetrating, quorum sensing, defense, and cell-cell communication in the mouse skin. Interestingly, peptides generated in the hemorrhagic skin promoted the inhibition of collagen-induced platelet aggregation and could act synergistically in the local tissue damage induced by HF3.


Assuntos
Bothrops , Venenos de Crotalídeos , Camundongos , Animais , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/química , Metaloproteases/química , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Hemorragia/induzido quimicamente , Venenos de Serpentes/toxicidade , Venenos de Serpentes/química , Peptídeos , Bothrops/metabolismo
2.
Toxins (Basel) ; 13(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34822548

RESUMO

Hemorrhage induced by snake venom metalloproteinases (SVMPs) is a complex phenomenon that involves capillary disruption and blood extravasation. HF3 (hemorrhagic factor 3) is an extremely hemorrhagic SVMP of Bothrops jararaca venom. Studies using proteomic approaches revealed targets of HF3 among intracellular and extracellular proteins. However, the role of the cleavage of plasma proteins in the context of the hemorrhage remains not fully understood. The main goal of this study was to analyze the degradome of HF3 in human plasma. For this purpose, approaches for the depletion of the most abundant proteins, and for the enrichment of low abundant proteins of human plasma, were used to minimize the dynamic range of protein concentration, in order to assess the proteolytic activity of HF3 on a wide spectrum of proteins, and to detect the degradation products using mass spectrometry-based untargeted peptidomics. The results revealed the hydrolysis products generated by HF3 and allowed the identification of cleavage sites. A total of 61 plasma proteins were identified as cleaved by HF3. Some of these proteins corroborate previous studies, and others are new HF3 targets, including proteins of the coagulation cascade, of the complement system, proteins acting on the modulation of inflammation, and plasma proteinase inhibitors. Overall, the data indicate that HF3 escapes inhibition and sculpts the plasma proteome by degrading key proteins and generating peptides that may act synergistically in the hemorrhagic process.


Assuntos
Proteínas Sanguíneas/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Metaloendopeptidases/toxicidade , Venenos de Serpentes/toxicidade , Animais , Bothrops , Humanos , Venenos de Serpentes/enzimologia
3.
Sci Rep ; 10(1): 12912, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737331

RESUMO

Envenoming by viperid snakes results in a complex pattern of tissue damage, including hemorrhage, which in severe cases may lead to permanent sequelae. Snake venom metalloproteinases (SVMPs) are main players in this pathogenesis, acting synergistically upon different mammalian proteomes. Hemorrhagic Factor 3 (HF3), a P-III class SVMP from Bothrops jararaca, induces severe local hemorrhage at pmol doses in a murine model. Our hypothesis is that in a complex scenario of tissue damage, HF3 triggers proteolytic cascades by acting on a partially known substrate repertoire. Here, we focused on the hypothesis that different proteoglycans, plasma proteins, and the platelet derived growth factor receptor (PDGFR) could be involved in the HF3-induced hemorrhagic process. In surface plasmon resonance assays, various proteoglycans were demonstrated to interact with HF3, and their incubation with HF3 showed degradation or limited proteolysis. Likewise, Western blot analysis showed in vivo degradation of biglycan, decorin, glypican, lumican and syndecan in the HF3-induced hemorrhagic process. Moreover, antithrombin III, complement components C3 and C4, factor II and plasminogen were cleaved in vitro by HF3. Notably, HF3 cleaved PDGFR (alpha and beta) and PDGF in vitro, while both receptor forms were detected as cleaved in vivo in the hemorrhagic process induced by HF3. These findings outline the multifactorial character of SVMP-induced tissue damage, including the transient activation of tissue proteinases, and underscore for the first time that endothelial glycocalyx proteoglycans and PDGFR are targets of SVMPs in the disruption of microvasculature integrity and generation of hemorrhage.


Assuntos
Proteínas Sanguíneas/metabolismo , Bothrops , Venenos de Crotalídeos/toxicidade , Hemorragia , Metaloproteases/toxicidade , Peptidoglicano/sangue , Proteólise , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/sangue , Receptor beta de Fator de Crescimento Derivado de Plaquetas/sangue , Proteínas de Répteis/toxicidade , Animais , Hemorragia/sangue , Hemorragia/induzido quimicamente , Masculino , Camundongos
4.
Amino Acids ; 48(5): 1331-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27020778

RESUMO

The Proteomic Identification of Cleavage Sites (PICS) approach was employed for profiling the substrate specificity of HF3, a hemorrhagic snake venom metalloproteinase (SVMP) from Bothrops jararaca. A tryptic peptide library from human plasma was subject to HF3 cleavage and amino acid occurrence for P6 to P6' sites was mapped. 71 cleavage sites were detected and revealed a clear preference for leucine at P1' position, followed by hydrophobic residues in P2'. PICS confirmed existing data on prime site specificity of SVMPs.


Assuntos
Bothrops/genética , Metaloproteases/química , Metaloproteases/metabolismo , Proteínas de Répteis/química , Proteínas de Répteis/metabolismo , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Bothrops/metabolismo , Metaloproteases/genética , Dados de Sequência Molecular , Biblioteca de Peptídeos , Proteoma , Proteínas de Répteis/genética , Venenos de Serpentes/metabolismo , Especificidade por Substrato
5.
Amino Acids ; 48(5): p. 1331-1335, 2016.
Artigo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13743

RESUMO

The Proteomic Identification of Cleavage Sites (PICS) approach was employed for profiling the substrate specificity of HF3, a hemorrhagic snake venom metalloproteinase (SVMP) from Bothrops jararaca. A tryptic peptide library from human plasma was subject to HF3 cleavage and amino acid occurrence for P6 to P6' sites was mapped. 71 cleavage sites were detected and revealed a clear preference for leucine at P1' position, followed by hydrophobic residues in P2'. PICS confirmed existing data on prime site specificity of SVMPs


Assuntos
Bioquímica , Biologia Molecular , Toxicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA