Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 12(29): 10005-10013, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34377395

RESUMO

In the absence of experimental data, models of complex chemical environments rely on predicted reaction properties. Astrochemistry models, for example, typically adopt variants of capture theory to estimate the reactivity of ionic species present in interstellar environments. In this work, we examine astrochemically-relevant charge transfer reactions between two isotopologues of ammonia, NH3 and ND3, and two rare gas ions, Kr+ and Ar+. An inverse kinetic isotope effect is observed; ND3 reacts faster than NH3. Combining these results with findings from an earlier study on Xe+ (Petralia et al., Nat. Commun., 2020, 11, 1), we note that the magnitude of the kinetic isotope effect shows a dependence on the identity of the rare gas ion. Capture theory models consistently overestimate the reaction rate coefficients and cannot account for the observed inverse kinetic isotope effects. In all three cases, the reactant and product potential energy surfaces, constructed from high-level ab initio calculations, do not exhibit any energetically-accessible crossing points. Aided by a one-dimensional quantum-mechanical model, we propose a possible explanation for the presence of inverse kinetic isotope effects in these charge transfer reaction systems.

2.
Rev Sci Instrum ; 89(11): 113110, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501304

RESUMO

A new cryogenic linear ion trap beamline has been constructed and commissioned, which serves to inject cold molecular and cluster ions into the RIKEN cryogenic electrostatic ring (RICE). Ions are created with an electrospray ion source, and a quadrupole mass filter is used for mass-selection prior to trap injection. The radio frequency octupole ion trap can be continuously loaded with ions and features a fast ion extraction mode to create short ion bunches with tens of µs duration. We report here on the simulations and development of the ion trap beamline and validate performance with the moderately heavy molecular cation methylene blue. Characterization of the novel trap design with additional wedge-shaped electrodes was carried out, which includes the determination of the temporal and spatial shape of the ion bunch and the total number of ions after extraction. Finally, these ion bunches are synchronized with the switching of a pulsed high-voltage acceleration device downstream of the trap, where the ions obtain a kinetic energy of up to 20 keV. The preparation and control of the keV ion beam are demonstrated for the ion injection into RICE.

3.
J Appl Crystallogr ; 51(Pt 5): 1378-1386, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279640

RESUMO

In most cases, the analysis of small-angle and wide-angle X-ray scattering (SAXS and WAXS, respectively) requires a theoretical model to describe the sample's scattering, complicating the interpretation of the scattering resulting from complex heterogeneous samples. This is the reason why, in general, the analysis of a large number of scattering patterns, such as are generated by time-resolved and scanning methods, remains challenging. Here, a model-free classification method to separate SAXS/WAXS signals on the basis of their inflection points is introduced and demonstrated. This article focuses on the segmentation of scanning SAXS/WAXS maps for which each pixel corresponds to an azimuthally integrated scattering curve. In such a way, the sample composition distribution can be segmented through signal classification without applying a model or previous sample knowledge. Dimensionality reduction and clustering algorithms are employed to classify SAXS/WAXS signals according to their similarity. The number of clusters, i.e. the main sample regions detected by SAXS/WAXS signal similarity, is automatically estimated. From each cluster, a main representative SAXS/WAXS signal is extracted to uncover the spatial distribution of the mixtures of phases that form the sample. As examples of applications, a mudrock sample and two breast tissue lesions are segmented.

4.
Adsorption (Boston) ; 24(6): 531-539, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956405

RESUMO

This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess carbon dioxide adsorption isotherms on NIST Reference Material RM 8852 (ammonium ZSM-5 zeolite), at 293.15 K (20 °C) from 1 kPa up to 4.5 MPa. Eleven laboratories participated in this exercise and, for the first time, high-pressure adsorption reference data are reported using a reference material. An empirical reference equation n e x = d ( 1 + exp [ - ln ( P ) + a / b ] ) c , [n ex -surface excess uptake (mmol/g), P-equilibrium pressure (MPa), a = -6.22, b = 1.97, c = 4.73, and d = 3.87] along with the 95% uncertainty interval (U k = 2 = 0.075 mmol/g) were determined for the reference isotherm using a Bayesian, Markov Chain Monte Carlo method. Together, this zeolitic reference material and the associated adsorption data provide a means for laboratories to test and validate high-pressure adsorption equipment and measurements. Recommendations are provided for measuring reliable high-pressure adsorption isotherms using this material, including activation procedures, data processing methods to determine surface excess uptake, and the appropriate equation of state to be used.

5.
Rev Sci Instrum ; 88(3): 033110, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372443

RESUMO

A new electrostatic ion storage ring, the RIKEN cryogenic electrostatic ring, has been commissioned with a 15-keV ion beam under cryogenic conditions. The ring was designed with a closed ion beam orbit of about 2.9 m, where the ion beam is guided entirely by electrostatic components. The vacuum chamber of the ring is cooled using a liquid-He-free cooling system to 4.2 K with a temperature difference of 0.4 K at most within all the positions measured by calibrated silicon diode sensors. The first cryogenic operation with a 15-keV Ne+ beam was successfully performed in August 2014. During the measurement, the Ne+ beam was stored under a ring temperature of 4.2 K with a residual-gas lifetime of more than 10 min. This permits an estimation of the residual gas density at a few 104 cm-3, which corresponds to a room-temperature-equivalent pressure of around 1×10-10 Pa. An effect of longitudinal pulse compression at the bunching cavity in the ring was clearly identified by monitoring the pick-up beam detector. The detailed design and mechanical structure of the storage ring, as well as the results from the commissioning run, are reported.

6.
Nat Commun ; 7: 12268, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464840

RESUMO

Storage of anthropogenic CO2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO2 escaping. Although natural CO2 reservoirs demonstrate that CO2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO2-bearing brines. This uncertainty poses a significant challenge to the risk assessment of geological carbon storage. Here we describe mineral reaction fronts in a CO2 reservoir-caprock system exposed to CO2 over a timescale comparable with that needed for geological carbon storage. The propagation of the reaction front is retarded by redox-sensitive mineral dissolution reactions and carbonate precipitation, which reduces its penetration into the caprock to ∼7 cm in ∼10(5) years. This distance is an order-of-magnitude smaller than previous predictions. The results attest to the significance of transport-limited reactions to the long-term integrity of sealing behaviour in caprocks exposed to CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA