Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 40: 107835, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35106340

RESUMO

To characterize the anisotropic and viscoelastic behaviors of the skin, we conducted an experimental campaign of in-vivo suction tests using the CutiScan®CS100 device from Courage and Khazaka electronics. In this data paper, we present the raw acquired data of the tests and their respective treated data. The tests were performed 30 times on the anterior forearm of a 28-year-old Caucasian male at different pressure set-points, ranging from 100 to 500 mbar with an increment of 20 mbar, at ambient temperature in a windowless room. The primary dataset consists of videos recorded by a probe camera associated with the CutiScan® device during the tests. After data treatment with DIC (Digital Image Correlation) technique and based on a homemade Python program, we have obtained secondary data tables and 2D displacement for all mapped grid nodes.

2.
Ultrason Sonochem ; 71: 105373, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33142223

RESUMO

Sonochemical (SC) processes can be increased with the application of fluid flow due to changes in bubble characteristics. In this work, a novel flow through set-up was applied to an ultrasonic horn system to investigate the effects of flow on the degradation of phenol. KI dosimetry and sonochemiluminescence (SCL) were also analysed, under the same conditions, to provide comparison of degradation to other SC processes. Further, sonoluminescence (SL) in water and different concentrations of potassium iodide (KI) and phenol solutions was studied to determine the effect of flow on processes inside the bubble that result in SL. The degradation of 0.1 mM phenol solutions, KI dosimetry and SL from phenol (0.1, 20 and 60 mM) and KI (0.1, 1 and 2 M) solutions were analysed under flow rates of 0, 24, 228 and 626 mL/min. For an ultrasonic horn system, all flow rates could augment phenol degradation beyond that of the systems without flow. At the lowest applied power, the amount of degradation was significantly increased with flow, becoming greater than degradation observed at the highest power. A strong correlation between phenol degradation and SC processes indicated that degradation followed an oxidative process. SL intensity from water, KI, and phenol solutions could also be increased with flow beyond the no flow system. For water this occurred most readily at higher powers, then for the solutes there was varied behaviour dependent upon the solute concentration. It was theorised that flow may increase the transfer of radical species to solution to enhance SC processes. An increase in SL, with flow, indicates that flow is acting to change the properties of the bubbles and/or the bubble field such that the active bubbles present collapse with greater total intensity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA