Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 72: 103131, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38555711

RESUMO

Oxidation processes in mitochondria and different environmental insults contribute to unwarranted accumulation of reactive oxygen species (ROS). These, in turn, rapidly damage intracellular lipids, proteins, and DNA, ultimately causing aging and several human diseases. Cells have developed different and very effective systems to control ROS levels. Among these, removal of excessive amounts is guaranteed by upregulated expression of various antioxidant enzymes, through activation of the NF-E2-Related Factor 2 (NRF2) protein. Here, we show that Mitogen Activated Protein Kinase 15 (MAPK15) controls the transactivating potential of NRF2 and, in turn, the expression of its downstream target genes. Specifically, upon oxidative stress, MAPK15 is necessary to increase NRF2 expression and nuclear translocation, by inducing its activating phosphorylation, ultimately supporting transactivation of cytoprotective antioxidant genes. Lungs are continuously exposed to oxidative damages induced by environmental insults such as air pollutants and cigarette smoke. Interestingly, we demonstrate that MAPK15 is very effective in supporting NRF2-dependent antioxidant transcriptional response to cigarette smoke of epithelial lung cells. Oxidative damage induced by cigarette smoke indeed represents a leading cause of disability and death worldwide by contributing to the pathogenesis of different chronic respiratory diseases and lung cancer. Therefore, the development of novel therapeutic strategies able to modulate cellular responses to oxidative stress would be highly beneficial. Our data contribute to the necessary understanding of the molecular mechanisms behind such responses and identify new potentially actionable targets.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
2.
Aging Cell ; 21(7): e13620, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35642724

RESUMO

Mitochondria are the major source of reactive oxygen species (ROS), whose aberrant production by dysfunctional mitochondria leads to oxidative stress, thus contributing to aging as well as neurodegenerative disorders and cancer. Cells efficiently eliminate damaged mitochondria through a selective type of autophagy, named mitophagy. Here, we demonstrate the involvement of the atypical MAP kinase family member MAPK15 in cellular senescence, by preserving mitochondrial quality, thanks to its ability to control mitophagy and, therefore, prevent oxidative stress. We indeed demonstrate that reduced MAPK15 expression strongly decreases mitochondrial respiration and ATP production, while increasing mitochondrial ROS levels. We show that MAPK15 controls the mitophagic process by stimulating ULK1-dependent PRKN Ser108 phosphorylation and inducing the recruitment of damaged mitochondria to autophagosomal and lysosomal compartments, thus leading to a reduction of their mass, but also by participating in the reorganization of the mitochondrial network that usually anticipates their disposal. Consequently, MAPK15-dependent mitophagy protects cells from accumulating nuclear DNA damage due to mitochondrial ROS and, consequently, from senescence deriving from this chronic DNA insult. Indeed, we ultimately demonstrate that MAPK15 protects primary human airway epithelial cells from senescence, establishing a new specific role for MAPK15 in controlling mitochondrial fitness by efficient disposal of old and damaged organelles and suggesting this kinase as a new potential therapeutic target in diverse age-associated human diseases.


Assuntos
Senescência Celular , MAP Quinases Reguladas por Sinal Extracelular , Mitofagia , Autofagia/genética , Senescência Celular/genética , Senescência Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mitofagia/genética , Mitofagia/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
3.
J Cell Mol Med ; 24(10): 5565-5577, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32301278

RESUMO

Malignant mesothelioma (MM) is an aggressive asbestos-related cancer of the serous membranes. Despite intensive treatment regimens, MM is still a fatal disease, mainly due to the intrinsic resistance to current therapies and the lack of predictive markers and new valuable molecular targets. Protein arginine methyltransferase 5 (PRMT5) inhibition has recently emerged as a potential therapy against methylthioadenosine phosphorylase (MTAP)-deficient cancers, in which the accumulation of the substrate 5'-methylthioadenosine (MTA) inhibits PRMT5 activity, thus sensitizing the cells to further PRMT5 inhibition. Considering that the MTAP gene is frequently codeleted with the adjacent cyclin-dependent kinase inhibitor 2A (CDKN2A) locus in MM, we assessed whether PRMT5 could represent a therapeutic target also for this cancer type. We evaluated PRMT5 expression, the MTAP status and MTA content in normal mesothelial and MM cell lines. We found that both administration of exogenous MTA and stable PRMT5 knock-down, by short hairpin RNAs (shRNAs), selectively reduced the growth of MTAP-deleted MM cells. We also observed that PRMT5 knock-down in MTAP-deficient MM cells reduced the expression of E2F1 target genes involved in cell cycle progression and of factors implicated in epithelial-to-mesenchymal transition. Therefore, PRMT5 targeting could represent a promising new therapeutic strategy against MTAP-deleted MMs.


Assuntos
Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Mesotelioma/genética , Proteína-Arginina N-Metiltransferases/genética , Purina-Núcleosídeo Fosforilase/genética , Linhagem Celular Tumoral , Cromatografia Líquida , Transição Epitelial-Mesenquimal/genética , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Mesotelioma/metabolismo , Mesotelioma/patologia , Espectrometria de Massas em Tandem
4.
J Cell Physiol ; 233(9): 7391-7401, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29659015

RESUMO

Malignant mesothelioma (MM) is a very aggressive asbestos-related cancer, whose incidence is increasing worldwide. Unfortunately, no effective therapies are currently available and the prognosis is extremely poor. Recently, the anti-helminthic drug pyrvinium pamoate has attracted a strong interest for its anti-cancer activity, which has been demonstrated in many cancer models. Considering the previously established inhibitory effect of pyrvinium pamoate on the Wnt/ß-catenin pathway and given the important role of this pathway in MM, we investigated the potential anti-tumor activity of this drug in MM cell lines. We observed that pyrvinium pamoate significantly impairs MM cell proliferation, cloning efficiency, migration, and tumor spheroid formation. At the molecular level, our data show that pyrvinium pamoate down-regulates the expression of ß-catenin and Wnt-regulates genes. Overall, our study suggests that the repurposing of pyrvinium pamoate for MM treatment could represent a new promising therapeutic approach.


Assuntos
Reposicionamento de Medicamentos , Mesotelioma/tratamento farmacológico , Compostos de Pirvínio/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Mesotelioma/genética , Mesotelioma/patologia , Compostos de Pirvínio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fatores de Tempo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA