Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 116: e210227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35137905

RESUMO

BACKGROUND: Plasmodium vivax, the major cause of malaria in Latin America, has a large subtelomeric multigene family called vir. In the P. vivax genome, about 20% of its sequences are vir genes. Vir antigens are grouped in subfamilies according to their sequence similarities and have been shown to have distinct roles and subcellular locations. However, little is known about vir subfamilies, especially when comes to their functions. OBJECTIVE: To evaluate the diversity, antigenicity, and adhesiveness of Plasmodium vivax VIR-E. METHODS: Vir-E genes were amplified from six P. vivax isolates from Manaus, North of Brazil. The presence of naturally acquired antibodies to recombinant PvBrVIR-E and PvAMA-1 was evaluated by ELISA. Binding capacity of recombinant PvBrVIR-E was assessed by adhesion assay to CHO-ICAM1 cells. FINDINGS: Despite vir-E sequence diversity, among those identified sequences, a representative one was chosen to be expressed as recombinant protein. The presence of IgM or IgG antibodies to PvBrVIR-E was detected in 23.75% of the study population while the presence of IgG antibodies to PvAMA-1 antigen was 66.25% in the same population. PvBrVIR-E was adhesive to CHO-ICAM1. MAIN CONCLUSIONS: PvBrVIR-E was antigenic and adhesive to CHO-ICAM1.


Assuntos
Malária Vivax , Plasmodium vivax , Adesividade , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Brasil , Humanos , Plasmodium vivax/genética , Proteínas de Protozoários/genética
2.
Mem. Inst. Oswaldo Cruz ; 116: e210227, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360598

RESUMO

BACKGROUND Plasmodium vivax, the major cause of malaria in Latin America, has a large subtelomeric multigene family called vir. In the P. vivax genome, about 20% of its sequences are vir genes. Vir antigens are grouped in subfamilies according to their sequence similarities and have been shown to have distinct roles and subcellular locations. However, little is known about vir subfamilies, especially when comes to their functions. OBJECTIVE To evaluate the diversity, antigenicity, and adhesiveness of Plasmodium vivax VIR-E. METHODS Vir-E genes were amplified from six P. vivax isolates from Manaus, North of Brazil. The presence of naturally acquired antibodies to recombinant PvBrVIR-E and PvAMA-1 was evaluated by ELISA. Binding capacity of recombinant PvBrVIR-E was assessed by adhesion assay to CHO-ICAM1 cells. FINDINGS Despite vir-E sequence diversity, among those identified sequences, a representative one was chosen to be expressed as recombinant protein. The presence of IgM or IgG antibodies to PvBrVIR-E was detected in 23.75% of the study population while the presence of IgG antibodies to PvAMA-1 antigen was 66.25% in the same population. PvBrVIR-E was adhesive to CHO-ICAM1. MAIN CONCLUSIONS PvBrVIR-E was antigenic and adhesive to CHO-ICAM1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA