Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(9): 1081, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615731

RESUMO

Unmanned aerial vehicle (UAV)-based remote sensing has been widely considered recently in field scale crop yield estimation. In this research, the capability of 13 spectral indices in the form of 5 groups was studied under different irrigation water and N fertilizer managements in terms of corn biomass monitoring and estimation. Farm experiments were conducted at Urmia University, Iran. The research was done using a randomized complete block design at three levels of 60, 80, and 100% of irrigation water and nitrogen requirements during four replications. The aerial imagery operations were performed using a fixed-wing UAV equipped with a Sequoia sensor during three plant growth stages including stem elongation, flowering, and silking. The effect of different irrigation water and nitrogen levels on vegetation indices and crop biomass was examined using variance decomposition analysis. Then, the correlation of the vegetation indices with corn biomass was evaluated by fitting linear regression models. Based on the obtained results, the indices based on near infrared (NIR) and red-edge spectral bands showed a better performance. Thus, the MERIS terrestrial chlorophyll index (MTCI) indicated the highest accuracy at estimating corn biomass during the growing season with the R2 and RMSE values of 0.92 and 8.27 ton/ha, respectively. Finally, some Bayesian model averaging (BMA) models were proposed to estimate corn biomass based on the selected indices and different spectral bands. Results of the BMA models revealed that the accuracy of biomass estimation models could be improved using the capabilities and advantages of different vegetation indices.


Assuntos
Dispositivos Aéreos não Tripulados , Zea mays , Humanos , Teorema de Bayes , Biomassa , Monitoramento Ambiental , Nitrogênio
2.
Sci Rep ; 11(1): 869, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441705

RESUMO

Measurement of plant and soil indices as well as their combinations are generally used for irrigation scheduling and water stress management of crops and horticulture. Rapid and accurate determination of irrigation time is one of the most important issues of sustainable water management in order to prevent plant water stress. The objectives of this study are to develop baselines and provide irrigation scheduling relationships during different stages of black gram growth, determine the critical limits of plant and soil indices, and also determine the relationships between plant physiology and soil indices. This study was conducted in a randomized complete block design at the four irrigation levels 50 (I1), 75 (I2), 100 (I3 or non-stress treatment) and 125 (I4) percent of crop's water requirement with three replications in Urmia region in Iran in order to irrigation scheduling of black gram using indices such as canopy temperature (Tc), crop water stress index (CWSI), relative water content (RWC), leaf water potential (LWP), soil water (SW) and penetration resistance (Q) of soil under one-row drip irrigation. The plant irrigation scheduling was performed by using the experimental crop water stress index (CWSI) method. The upper and lower baseline equations as well as CWSI were calculated for the three treatments of I1, I2 and I3 during the plant growth period. Using the extracted baselines, the mean CWSI values for the three treatments of I1, I2 and I3 were calculated to be 0.37, 0.23 and 0.15, respectively, during the growth season. Finally, using CWSI, the necessary equations were provided to determine the irrigation schedule for the four growing stages of black gram, i.e. floral induction-flowering, pod formation, seed and pod filling and physiological maturity, as (Tc - Ta)c = 1.9498 - 0.1579(AVPD), (Tc - Ta)c = 4.4395 - 0.1585(AVPD), (Tc - Ta)c = 2.4676 - 0.0578(AVPD) and (Tc - Ta)c = 5.7532 - 0.1462(AVPD), respectively. In this study, soil and crop indices, which were measured simultaneously at maximum stress time, were used as a complementary index to remove CWSI constraints. It should be noted that in Urmia, the critical difference between the canopy temperature and air temperature (Tc - Ta), soil penetration resistance (Q), soil water (SW) and relative water content (RWC) for the whole growth period of black gram were - 0.036 °C, 10.43 MPa and 0.14 cm3 cm-3 and 0.76, respectively. Ideal point error (IPE) was also used to estimate RWC, (Tc - Ta) and LWP as well as to select the best regression model. According to the results, black gram would reduce its RWC less through reducing its transpiration and water management. Therefore, it can be used as a low-water-consuming crop. Furthermore, in light of available facilities, the farmer can use the regression equations between the obtained soil and plant indices and the critical boundaries for the irrigation scheduling of the field.


Assuntos
Irrigação Agrícola/métodos , Solo/química , Vigna/fisiologia , Conservação dos Recursos Hídricos/métodos , Produtos Agrícolas/metabolismo , Desidratação , Irã (Geográfico) , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Temperatura , Vigna/crescimento & desenvolvimento , Água
3.
J Environ Manage ; 263: 110398, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174535

RESUMO

The increasing growth of the world's population has established an unprecedented pressure in the availability of fresh water resources, with food production systems consuming over 70% of the world's fresh water withdrawals. Other pressures include climate change effects and the increasing number of semi-arid regions. The present challenges are therefore the maintenance of high production rates with fewer resources, especially in regions where water is becoming less accessible. In this study, we have tested the effect of sub-surface irrigation and silicon fertilization in maize growth with and without water limitation. These solutions have been suggested as effective in drought conditions but an overall study of their effects on the soil water balance and root length density is lacking. We have conducted a pot experiment with maize for 101 days where measurements in soil water content and root length were taken. Also, Hydrus 2-D was used to simulate the root water uptake and calculate the water balance. Results show that both sub-surface irrigation and silicon fertilization increase the root system by 21% and 34% respectively in water stress situation. Also, in the case of no water stress, silicon fertilization still induces an increase of 11% in the root development, showing that this solution has positive effects even when the crop is not hydrologically limited. Indeed the root water uptake was higher for the silicon treatment when no water limitation was present (71.6 L), compared to the sub-surface irrigation (62.5 L) and the control (62.3 L). While sub-surface irrigation generally decreased evaporation, the silicon treatment lowered drainage by promoting a better and more efficient root water uptake.


Assuntos
Água , Zea mays , Irrigação Agrícola , Silício , Solo
4.
Plant Physiol Biochem ; 148: 333-346, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32004917

RESUMO

Water scarcity is one of the major factors limiting apple production. Partial root-zone drying (PRD) is a water-saving irrigation technique necessary to improve the efficiency of irrigation techniques to optimize the amount of fruit produced with the volume of water used. The apple trees cv. Red Delicious were exposed to four treatments, including (1) control with 100% of the crop evapotranspiration (ETc) needs; (2) alternate partial root-zone drying with 75% of the ETc needs (APRD75); (3) fixed partial root-zone drying with 75% of the ETc needs (FPRD75); (4) fixed partial root-zone irrigation with 50% of the ETc needs (FPRD50) in a semiarid region of Iran. Results showed that leaf water potential (Ψ leaf), and chlorophyll were significantly decreased in FPRD50 compared to control and other PRD treatments. APRD75 and FPRD75 treatments significantly enhanced (+) -catechin (+C), epicatechin (EC), chlorogenic acid (CGA), caffeic acid (CA) as well as increased water use efficiency (WUE) (by 30-40% compared to control) without significant reduction of yield. PRD reduced gibberellic acid (GA3) and kinetin, while, increased the abscisic acid (ABA) and salicylic acid (SA) levels. The abiotic stress-responsive transcription factors (TFs) MdoMYB121, MdoMYB155, MdbZIP2, and MdbZIP48 were highly expressed in all PRD treatments. Our results demonstrated that APRD75 and FPRD75 have the potential to stimulate antioxidant defense mechanisms, hormonal signaling pathways, and expression of drought-tolerance TFs to improve WUE while maintaining crop yield. Therefore, APRD75andFPRD75 with water savings as compared to full irrigation might be a suitable strategy for irrigation apple trees under water scarcity.


Assuntos
Malus , Raízes de Plantas , Água , Irã (Geográfico) , Malus/química , Malus/genética , Raízes de Plantas/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA