Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1240245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795240

RESUMO

Introduction: COVID-19 has been a major focus of scientific research since early 2020. Due to its societal, economic, and clinical impact worldwide, research efforts aimed, among other questions, to address the effect of host genetics in susceptibility and severity of COVID-19. Methods: We, therefore, performed next-generation sequencing of coding and regulatory regions of 16 human genes, involved in maintenance of the immune system or encoding receptors for viral entry into the host cells, in a subset of 60 COVID-19 patients from the General Hospital Tesanj, Bosnia and Herzegovina, classified into three groups of clinical conditions of different severity ("mild," "moderate," and "severe"). Results: We confirmed that the male sex and older age are risk factors for severe clinical picture and identified 13 variants on seven genes (CD55, IL1B, IL4, IRF7, DDX58, TMPRSS2, and ACE2) with potential functional significance, either as genetic markers of modulated susceptibility to SARS-CoV-2 infection or modifiers of the infection severity. Our results include variants reported for the first time as potentially associated with COVID-19, but further research and larger patient cohorts are required to confirm their effect. Discussion: Such studies, focused on candidate genes and/or variants, have a potential to answer the questions regarding the effect of human genetic makeup on the expected infection outcome. In addition, loci we identified here were previously reported to have clinical significance in other diseases and viral infections, thus confirming a general, broader significance of COVID-19-related research results following the end of the pandemic period.

2.
PLoS One ; 17(3): e0265431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35358214

RESUMO

BACKGROUND: Serostudies are important resources when following pandemics and predicting their further spread, as well as determining the length of protection against reinfection and vaccine development. The aim of this study was to update data on the prevalence of seropositive individuals in Canton Sarajevo, Bosnia and Herzegovina (B&H) from September 2020 to May 2021. METHODS: Anti-SARS-CoV-2 antibodies were quantified using an electrochemiluminescence immunoassay. RESULTS: Compared to the period April-July 2020, when anti-SARS-CoV-2 antibodies were detected in 3.77% of samples, one year later (May 2021) the estimated percentage within the same population of the urban Canton Sarajevo was 29.9% (5,406/18,066). Of all anti-SARS-CoV-2 Ig-positive individuals, 53.27% were men, and 69.00% were of 50 years of age or younger. Also, the current update found the individuals 50 years of age or younger to be more frequently anti-SARS-CoV-2 Ig positive compared to older individuals. On the other hand, higher median anti-SARS-CoV-2 Ig levels were found in individuals > 50 years old than in younger individuals, as well as in men compared to women. Seropositivity gradually increased from September 2020 to May 2021, with the lowest frequency of positive cases (3.5%) observed in September 2020, and the highest frequency (77.7%) in January 2021. CONCLUSION: Our results provided important seroprevalence data that could help in planning restrictive local public health measures to protect the population of Sarajevo Canton, especially considering that at the time of the study the vaccines were virtually inaccessible to the general population not belonging to any of the high-priority groups for vaccination.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Bósnia e Herzegóvina/epidemiologia , COVID-19/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos
3.
Acta Med Acad ; 50(1): 175-196, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34075772

RESUMO

Here we describe the major genetic and genomic aberrations found in myeloid malignancies and how those markers are used in patients' diagnosis, prognosis, and targeted treatment. In Bosnia and Herzegovina, cytogenetic and molecular diagnostics for myeloid malignancies have been established and continually improved since 2005. We report the current state of available diagnostic tools for myeloid malignancies in Bosnia and Herzegovina. Myeloid malignancies are a heterogeneous group of clonal blood diseases characterized by defects in hematopoietic stem cells and myeloid progenitors that lead to abnormal proliferation, differentiation, localization, and self-renewal. Most common myeloid malignancies include myeloproliferative neoplasms (MPNs), myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML). Molecular diagnostics of myeloid malignancies have significantly expanded in the last decade with new genetic and genomic markers for diagnosis, prognosis, and treatment. CONCLUSION: In the last decade, several new genomic markers important for patient diagnosis, prognosis, and therapy have been discovered that need to be implemented in routine molecular diagnostics not only in developed nations but also in developing nations such as Bosnia and Herzegovina.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Bósnia e Herzegóvina , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Prognóstico
4.
Brain Sci ; 11(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071202

RESUMO

Brain tumors diagnosis in children is a scientific concern due to rapid anatomical, metabolic, and functional changes arising in the brain and non-specific or conflicting imaging results. Pediatric brain tumors diagnosis is typically centralized in clinical practice on the basis of diagnostic clues such as, child age, tumor location and incidence, clinical history, and imaging (Magnetic resonance imaging MRI / computed tomography CT) findings. The implementation of deep learning has rapidly propagated in almost every field in recent years, particularly in the medical images' evaluation. This review would only address critical deep learning issues specific to pediatric brain tumor imaging research in view of the vast spectrum of other applications of deep learning. The purpose of this review paper is to include a detailed summary by first providing a succinct guide to the types of pediatric brain tumors and pediatric brain tumor imaging techniques. Then, we will present the research carried out by summarizing the scientific contributions to the field of pediatric brain tumor imaging processing and analysis. Finally, to establish open research issues and guidance for potential study in this emerging area, the medical and technical limitations of the deep learning-based approach were included.

5.
Front Genet ; 12: 671467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178033

RESUMO

Human Y-chromosomal haplogroups are an important tool used in population genetics and forensic genetics. A conventional method used for Y haplogroup assignment is based on a set of Y-single nucleotide polymorphism (SNP) markers deployed, which exploits the low mutation rate nature of these markers. Y chromosome haplogroups can be successfully predicted from Y-short tandem repeat (STR) markers using different software packages, and this method gained much attention recently due to its labor-, time-, and cost-effectiveness. The present study was based on the analysis of a total of 480 adult male buccal swab samples collected from different regions of Bosnia and Herzegovina. Y haplogroup prediction was performed using Whit Athey's Haplogroup Predictor, based on haplotype data on 23 Y-STR markers contained within the PowerPlex® Y23 kit. The results revealed the existence of 14 different haplogroups, with I2a, R1a, and E1b1b being the most prevalent with frequencies of 43.13, 14.79, and 14.58%, respectively. Compared to the previously published studies on Bosnian-Herzegovinian population based on Y-SNP and Y-STR data, this study represents an upgrade of molecular genetic data with a significantly larger number of samples, thus offering more accurate results and higher probability of detecting rare haplogroups.

6.
Arch Med Sci ; 17(3): 823-826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025854

RESUMO

INTRODUCTION: Serological detection of SARS-CoV-2-specific immunoglobulins G (IgG) and M (IgM) antibodies is becoming increasingly important in the management of the COVID-19 pandemic. METHODS: We report the first results of COVID-19 serological testing in Bosnia and Herzegovina on 2841 samples collected and analysed in 2 medical institutions in Sarajevo. Antibody detection was performed using commercially available kits. RESULTS: In the first cohort, 43 IgM-positive/IgG-negative and 16 IgM-positive/IgG-positive individuals were detected, corresponding to 3.41% of participants having developed antibodies. In the second cohort, 4.28% participants were found to be IgM-negative/IgG-positive. CONCLUSIONS: Our results suggest the need for population-wide serological surveying in Bosnia and Herzegovina.

7.
Genet Test Mol Biomarkers ; 25(1): 55-58, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33470888

RESUMO

Background: The human angiotensin I converting enzyme 1 (ACE1) gene insertion/deletion (I/D) polymorphism is classified based on the presence or absence of a 287 bp Alu sequence. The ACE1 D allele is associated with higher ACE1 concentrations in tissues. Previous research has shown that susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is primarily determined by the affinity between the viral receptor-binding domain and the host human receptor angiotensin-converting enzyme 2 (hACE2) receptor. In the human genome, ACE2 is identified as a homolog to ACE1. Objective: The purpose of this study was to characterize the ACE1 D allele distribution in Bosnia and Herzegovina (B&H), so as to compare it to population data from other European countries and to investigate the potential correlation between D allele frequencies and coronavirus disease 2019 (COVID-19) epidemiological findings in selected European populations. Methods: The ACE1 D allele frequencies in 18 selected European populations were analyzed and compared with COVID-19 prevalence, mortality, and severity using multivariate linear regression analysis. Results and Discussion: The ACE1 D allele distribution within the B&H population was similar to its distribution in other European populations. Regression analysis showed no significant correlation between the D allele frequency and the incidence of infections between the examined populations, nor with the rates of fatality and severe cases. Conclusion: There is no clear statistical evidence that the ACE1 D allele is associated with increased or decreased COVID-19 incidence, mortality, and case severity within the investigated populations.


Assuntos
COVID-19/epidemiologia , Frequência do Gene , Predisposição Genética para Doença , Peptidil Dipeptidase A/genética , Alelos , Elementos Alu/genética , COVID-19/diagnóstico , COVID-19/genética , COVID-19/virologia , Europa (Continente)/epidemiologia , Geografia , Humanos , Mutação INDEL , Incidência , Polimorfismo Genético , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença
8.
Heliyon ; 6(11): e05191, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163670

RESUMO

Glucosylceramidase (GCase) is a lysosomal enzyme that catalyzes the cleavage of ß-glucosidic linkage of glucocerebroside (GC) into glucose and ceramide; thereby, plays an essential function in the degradation of complex lipids and the turnover of cellular membranes. The growing list of 460 mutations in the gene coding for it-glucosylceramidase beta acid 1 (GBA1)-is reported to abolish its catalytic activity and decrease its enzyme stability, associating it with severe health conditions such as Gaucher disease (GD), Parkinson Disease (PD) and Dementia with Lewy bodies (DLB). Although the three-dimensional structure of wild type glucosylceramidase is elucidated, little is known about its features in human cells. Moreover, alternative sources of GCase that prove to be effective in the treatment of diseases with enzyme treatment therapies, impose the need for a simple and cost-effective procedure to study the enzyme behavior. This work, for the first time, shows a well-established, yet simple, cost- and time-efficient protocol for the study of GCase enzyme in human leukocytes by the artificial substrate p-Nitrophenyl-ß-D-glucopyranoside (PNPG). Characterization of the enzyme in human leukocytes for activation parameters (optimal pH, Km, and Vmax) and enzyme inhibition was done. The results indicate that the optimum pH of GCase enzyme with PNPG is 5.0. The Km and Vmax values are 12.6mM and 333 U/mg, respectively. Gluconolactone competitively inhibits GCase, with a Ki value of 0.023 mM and IC50 of 0.047 mM. Glucose inhibition is uncompetitive with a Ki of 1.94 mM and IC50 of 55.3 mM. This is the first report for the inhibitory effect of glucose, δ-gluconolactone on human leukocyte GCase activity.

9.
J Environ Radioact ; 192: 67-74, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29890359

RESUMO

Since the first widespread use of depleted uranium in military in the 1991 Gulf War, the so-called "Gulf War Syndrome" has been a topic of ongoing debate. However, a low number of reliable scientific papers demonstrating the extent of possible contamination as well as its connection to the health status of residents and deployed veterans has been published. The authors of this study have therefore aimed to make a selection of data based on strict inclusion and exclusion criteria. With the goal of clarifying the extent of DU contamination after the Gulf Wars, previously published data regarding the levels of DU in the Middle East region were analyzed and presented in the form of a meta-analysis. In addition, the authors attempted to make a correlation between the DU levels and their possible effects on afflicted populations. According to results observed by comparing 234U/238U and 235U/238U isotopic activity ratios, as well as 235U/238U mass ratios in air, water, soil and food samples among the countries in the Middle East region, areas indicating contamination with DU were Al Doha, Manageesh and Um Al Kwaty in Kuwait, Al-Salman, Al-Nukhaib and Karbala in Iraq, Beirut in Lebanon and Sinai in Egypt. According to these data, no DU contamination was observed in Algeria, Israel, Afghanistan, Oman, Qatar, Iran, and Yemen. Due to the limited number of reliable data on the health status of afflicted populations, it was not possible to make a correlation between DU levels and health effects in the Middle East region.


Assuntos
Poluentes Radioativos/análise , Urânio/análise , Guerra , Egito , Exposição Ambiental/análise , Humanos , Irã (Geográfico) , Iraque , Israel , Kuweit , Líbano , Síndrome do Golfo Pérsico , Catar , Armas
10.
Environ Res ; 156: 665-673, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28472753

RESUMO

The main aim of this review is to summarize and discuss the current state of knowledge on chemical toxicity and radioactivity of depleted uranium (DU) and their effect on living systems and cell lines. This was done by presenting a summary of previous investigations conducted on different mammalian body systems and cell cultures in terms of potential changes caused by either chemical toxicity or radioactivity of DU. In addition, the authors aimed to point out the limitations of those studies and possible future directions. The majority of both in vitro and in vivo studies performed using animal models regarding possible effects caused by acute or chronic DU exposure has been reviewed. Furthermore, exposure time and dose, DU particle solubility, and uranium isotopes as factors affecting the extent of DU effects have been discussed. Special attention has been dedicated to chromosomal aberrations, DNA damage and DNA breaks, as well as micronuclei formation and epigenetic changes, as DU has recently been considered a possible causative factor of all these processes. Therefore, this approach might represent a novel area of study of DU-related irradiation effects on health. Since different studies offer contradictory results, the main aim of this review is to summarize and briefly discuss previously obtained results in order to identify the current opinion on DU toxicity and radioactivity effects in relation to exposure type and duration, as well as DU properties.


Assuntos
Poluentes Ambientais/toxicidade , Urânio/toxicidade , Animais , Aberrações Cromossômicas , Dano ao DNA , Metilação de DNA , Epigênese Genética , Humanos , Radioatividade
11.
J Environ Radioact ; 172: 207-217, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28395154

RESUMO

In recent years, contradicting data has been published on the connection between the presence of depleted uranium and an increased cancer incidence among military personnel deployed in the Balkans during the 1992-1999 wars. This has led to numerous research articles investigating possible depleted uranium contamination of the afflicted regions of the Balkan Peninsula, namely Bosnia & Herzegovina, Serbia, Kosovo and Montenegro. The aim of this study was to collect data from previously published reports investigating the levels of depleted uranium in the Balkans and to present the data in the form of a meta-analysis. This would provide a clear image of the extent of depleted uranium contamination after the Balkan conflict. In addition, we tested the hypothesis that there is a correlation between the levels of depleted uranium and the assumed depleted uranium-related health effects. Our results suggest that the majority of the examined sites contain natural uranium, while the area of Kosovo appears to be most heavily afflicted by depleted uranium pollution, followed by Bosnia & Herzegovina. Furthermore, the results indicate that it is not possible to make a valid correlation between the health effects and depleted uranium-contaminated areas. We therefore suggest a structured collaborative plan of action where long-term monitoring of the residents of depleted uranium-afflicted areas would be performed. In conclusion, while the possibility of depleted uranium toxicity in post-conflict regions appears to exist, there currently exists no definitive proof of such effects, due to insufficient studies of potentially afflicted populations, in addition to the lack of a common epidemiological approach in the reviewed literature.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Urânio/análise , Península Balcânica , Bósnia e Herzegóvina , Kosovo , Montenegro , Sérvia , Espectrometria gama , Guerra
12.
Coll Antropol ; 40(1): 1-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27301230

RESUMO

Analysis of Y-chromosome haplogroup distribution is widely used when investigating geographical clustering of different populations, which is why it plays an important role in population genetics, human migration patterns and even in forensic investigations. Individual determination of these haplogroups is mostly based on the analysis of single nucleotide polymorphism (SNP) markers located in the non-recombining part of Y-chromosome (NRY). On the other hand, the number of forensic and anthropology studies investigating short tandem repeats on the Y-chromosome (Y-STRs) increases rapidly every year. During the last few years, these markers have been successfully used as haplogroup prediction methods, which is why they have been used in this study. Previously obtained Y-STR haplotypes (23 loci) from 100 unrelated Turkish males recently settled in Sarajevo were used for the determination of haplogroups via 'Whit Athey's Haplogroup Predictor' software. The Bayesian probability of 90 of the studied haplotypes is greater than 92.2% and ranges from 51.4% to 84.3% for the remaining 10 haplotypes. A distribution of 17 different haplogroups was found, with the Y- haplogroup J2a being most prevalent, having been found in 26% of all the samples, whereas R1b, G2a and R1a were less prevalent, covering a range of 10% to 15% of all the samples. Together, these four haplogroups account for 63% of all Y-chromosomes. Eleven haplogroups (E1b1b, G1, I1, I2a, I2b, J1, J2b, L, Q, R2, and T) range from 2% to 5%, while E1b1a and N are found in 1% of all samples. Obtained results indicate that a large majority of the Turkish paternal line belongs to West Asia, Europe Caucasus, Western Europe, Northeast Europe, Middle East, Russia, Anatolia, and Black Sea Y-chromosome lineages. As the distribution of Y-chromosome haplogroups is consistent with the previously published data for the Turkish population residing in Turkey, it was concluded that the analyzed population could also be recognized as a representative sample of the Turkish population residing in Turkey.


Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Haplótipos/genética , Ásia Ocidental , Povo Asiático/genética , Teorema de Bayes , Bósnia e Herzegóvina , Europa (Continente) , Geografia , Humanos , Masculino , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único , Federação Russa , Turquia/etnologia , População Branca/genética
13.
Hum Biol ; 88(3): 201-209, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28828942

RESUMO

In a study of the Bosnian-Herzegovinian (B&H) population, Y-chromosome marker frequencies for 100 individuals, generated using the PowerPlex Y23 kit, were used to perform Y-chromosome haplogroup assignment via Whit Athey's Haplogroup Predictor. This algorithm determines Y-chromosome haplogroups from Y-chromosome short tandem repeat (Y-STR) data using a Bayesian probability-based approach. The most frequent haplogroup appeared to be I2a, with a prevalence of 49%, followed by R1a and E1b1b, each accounting for 17% of all haplogroups within the population. Remaining haplogroups were J2a (5%), I1 (4%), R1b (4%), J2b (2%), G2a (1%), and N (1%). These results confirm previously published preliminary B&H population data published over 10 years ago, especially the prediction about the B&H population being a part of the Western Balkan area, which served as the Last Glacial Maximum refuge for the Paleolithic human European population. Furthermore, the results corroborate the hypothesis that this area was a significant stopping point on the "Middle East-Europe highway" during the Neolithic farmer migrations. Finally, since these results are almost completely in accordance with previously published data on B&H and neighboring populations generated by Y-chromosome single nucleotide polymorphism analysis, it can be concluded that in silico analysis of Y-STRs is a reliable method for approximation of the Y-chromosome haplogroup diversity of an examined population.


Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Haplótipos , Migração Humana , Repetições de Microssatélites/genética , Teorema de Bayes , Bósnia e Herzegóvina , Simulação por Computador , Marcadores Genéticos , Humanos , Reprodutibilidade dos Testes
14.
Protein J ; 34(6): 453-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614504

RESUMO

ß-Glucosidase (ß-D-glucoside glucohydrolase, EC 3.2.1.21) is a catalytic enzyme present in both prokaryotes and eukaryotes that selectively catalyzes either the linkage between two glycone residues or between glycone and aryl or alkyl aglycone residue. Growing edible mushrooms in the soil with increased cellulose content can lead to the production of glucose, which is a process dependent on ß-glucosidase. In this study, ß-glucosidase was isolated from Agaricus bisporus (white button mushroom) using ammonium sulfate precipitation and hydrophobic interaction chromatography, giving 10.12-fold purification. Biochemical properties of the enzyme were investigated and complete characterization was performed. The enzyme is a dimer with two subunits of approximately 46 and 62 kDa. Optimum pH for the enzyme is 4.0, while the optimum temperature is 55 °C. The enzyme was found to be exceptionally thermostable. The most suitable commercial substrate for this enzyme is p-NPGlu with Km and Vmax values of 1.751 mM and 833 U/mg, respectively. Enzyme was inhibited in a competitive manner by both glucose and δ-gluconolactone with IC50 values of 19.185 and 0.39 mM, respectively and Ki values of 9.402 mM and 7.2 µM, respectively. Heavy metal ions that were found to inhibit ß-glucosidase activity are I(-), Zn(2+), Fe(3+), Ag(+), and Cu(2+). This is the first study giving complete biochemical characterization of A. bisporus ß-glucosidase.


Assuntos
Agaricus/enzimologia , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo , Sulfato de Amônio , Cromatografia Líquida , Proteínas Fúngicas/química , Interações Hidrofóbicas e Hidrofílicas , beta-Glucosidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA