Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10401, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710750

RESUMO

This investigation considered the usability of ceramic waste powder (CWP) in altered quantities in reinforced concrete beams (RCBs). In this way, it was aimed to reduce the environmental impacts of concrete by using CWP as a raw material in RCBs. 12 small-scale shear RCBs with the dimensions of 100 × 150 × 1000 mm were tested in this study. The variations of stirrups spacing and CWP ratio were examined in these specimens. The percentages of CWP by weight utilized in RCBs were 10%, 20%, and 30%, and stirrups spacings were adopted as 270 mm, 200 mm, and 160 mm. At the end of the study, it was determined that more than 10% CWP additive negatively affected the RCBs' compressive strength. The load-carrying capacity reduced between 30.3% and 59.4% when CWP increased from 0% to 30% as compared to RCB with stirrups spacing of 270 mm without CWP. However, compared to RCB with stirrups spacings of 200 mm and 160 mm without CWP, there were decreases in the load-carrying capacity as 21.4%-54.3% and 18.6%-54.6%, respectively. While the CWP ratio increased, the specimens with 160 mm, 200 mm, and 270 mm stirrups spacings obtained a lower maximum load value. However, with the increase of the CWP ratio in the specimens with 160 mm stirrups spacing, RCBs reached the maximum load-carrying capacity at an earlier displacement value. When stirrups spacing was selected as 270 mm, it was observed that the maximum load-carrying capacity of RCBs reached at a similar displacement value as the CWP ratio increased. Besides, it was resulted that the bending stiffness of RCBs reduced as the quantity of CWP enhanced. The bending stiffness decreased by 29.1% to 66.4% in the specimens with 270 mm stirrups spacing, 36.3% to 20.2% with 200 mm stirrups spacing, and 10.3% to 36.9% with 160 mm stirrups spacing. As an implication of the experiments, the use of CWP up to 10% in RCBs was realized as an economical and environmental approach and is suggested. There is some evidence to report that making use of CWP may be considered to be ecologically benign. This is due to the fact that reusing CWP may significantly reduce CO2 emissions, save energy, and reduce total power consumption. Furthermore, the experimental results were compared to the analytical calculations.

2.
Heliyon ; 10(8): e28388, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638992

RESUMO

Carbon nanotube (CNT) reinforcement can lead to a new way to enhance the properties of composites by transforming the reinforcement phases into nanoscale fillers. In this study, the buckling response of functionally graded CNT-reinforced composite (FG-CNTRC) sandwich beams was investigated experimentally and analytically. The top and bottom plates of the sandwich beams were composed of carbon fiber laminated composite layers and hard core. The hard core was made of a pultruded glass fiber-reinforced polymer (GFRP) profile. The layers of FG-CNTRC surfaces were reinforced with different proportions of CNT. The reference sample was made of only a pultruded GFRP profile. In the study, the reference sample and four samples with CNT were tested under compression. The largest buckling load difference between the reference sample and the sample with CNT was 37.7%. The difference between the analytical calculation results and experimental results was obtained with an approximation of 0.49%-4.92%. Finally, the buckling, debonding, interlaminar cracks, and fiber breakage were observed in the samples.

3.
Materials (Basel) ; 17(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38673247

RESUMO

Current regulatory documents and the scientific literature lack a theoretical framework and practical guidance for calculating centrifugally compacted reinforced concrete structures, taking into account the variatropy of their structure and the material's characteristics across the section. A problem related to this research lies in the need to form a systematized, theoretical, and practical knowledge base about variatropic concretes, the importance of which has been proven by various scientists without, to date, the creation of a unified scientific methodological base. The importance of this study is linked to the need for the world's construction projects and processes to transition to the most economically, materially, and resource-efficient types of building structures, which, of course, include structures made of variable-type concrete. This study's objective is to fill these scientific and engineering gaps. The purpose of this study was to systematize the existing knowledge base about the technology, structure formation, and properties of variatropic concrete, using an analytical review of previously conducted studies by ourselves and others, both in Russia and abroad. A theoretical justification for the formation of the structure of variatropic materials is presented. An analysis of the basic physical and mechanical properties of variatropic concretes is carried out and the features of their microstructures are considered. The main structures created using centrifugation technology are considered. Variatropic concrete has an increased amount of mechanical characteristics compared to traditional concrete, on average by up to 45%. The durability of variatropic concrete is improved, on average, by up to 30% compared to conventional concrete.

4.
Polymers (Basel) ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475325

RESUMO

The application of polymer materials in concrete structures is widespread and effectively used. However, there is a lack of a systematic knowledge base about the structure formation and properties of variatropic vibrocentrifuged modified fiber-reinforced concrete. The purpose of this work is the investigation of the influence of polypropylene (PF) and basalt fiber (BF) and modification with microsilica (MS) on the properties of variatropic concretes obtained using the synthesized vibration centrifugation technology. Test samples were made using vibration centrifugation technology, followed by sawing. Various types of fiber reinforcement were studied, both individually and in combination. To determine the degree of effectiveness of each recipe solution, the following main characteristics were monitored: the density and workability of concrete mixtures; the density of hardened composites; compressive strength (CS); bending strength (BS); water absorption (WA). In variatropic vibrocentrifuged concrete, the greatest efficiency is achieved with dispersed BF reinforcement in an amount of 1.5%. Compared to the control composition, the increase in CS was 8.50%, the increase in BS was 79.17%, and WA decreased by 27.54%. With PF reinforcement, the greatest effect was recorded at a dosage of 1.0%. The increase in CS was 3.16%, the increase in BS was 10.42%, and WA decreased by 17.39%. The MS modification showed the best effect with 8% replacement of part of the Portland cement. The increase in CS was 17.43%, the increase in BS was 14.58%, and WA decreased by 33.30%. The most effective and economically rational formulation solution for vibrocentrifuged concrete is combined fiber reinforcement in combination with the MS modification in the following quantities: BF-1.0%; PF-0.5%; MS-8%. The increase in CS was 22.82%, the increase in BS was 85.42%, and WA decreased by 37.68%.

5.
Materials (Basel) ; 16(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834742

RESUMO

Finding the solution to the problem of the accumulating waste from the mining and processing industries, as well as reducing their carbon footprint, is among the most important tasks today. Within the construction industry, in the field of the production of building materials such as concrete, these problems may be solved through the use of waste and by saving the binder component. The purpose of this study is to substantiate the feasibility of using waste coal dust (CD) in concrete and cement-sand mortars as a partial replacement for cement. Test samples were made by partially replacing cement with CD in an amount from 0% to 10% in increments of 2% by weight. The following main characteristics were studied: mobility and density of mixtures, as well as density, compressive strength, bending strength and water absorption of concrete and mortars. X-ray diffraction and microscopic analysis methods were used in this work. The introduction of CD to replace part of the cement, up to 10%, did not have a significant effect on the density of concrete and mortar mixtures but reduced their workability. The best values of physical and mechanical characteristics were recorded for concrete and mortar with 4% CD. The increases in the compressive strength of concrete and mortars were 6.6% and 5.7%, and in flexural strength 6.1% and 5.6%, respectively. Water absorption decreased by 9.7% for concrete and by 9.3% for mortar.

6.
Biomimetics (Basel) ; 8(3)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37504197

RESUMO

Fluid particle detection technology is of great importance in the oil and gas industry for improving oil-refining techniques and in evaluating the quality of refining equipment. The article discusses the process of creating a computer vision algorithm that allows the user to detect water globules in oil samples and analyze their sizes. The process of developing an algorithm based on the convolutional neural network (CNN) YOLOv4 is presented. For this study, our own empirical base was proposed, which comprised microphotographs of samples of raw materials and water-oil emulsions taken at various points and in different operating modes of an oil refinery. The number of images for training the neural network algorithm was increased by applying the authors' augmentation algorithm. The developed program makes it possible to detect particles in a fluid medium with the level of accuracy required by a researcher, which can be controlled at the stage of training the CNN. Based on the results of processing the output data from the algorithm, a dispersion analysis of localized water globules was carried out, supplemented with a frequency diagram describing the ratio of the size and number of particles found. The evaluation of the quality of the results of the work of the intelligent algorithm in comparison with the manual method on the verification microphotographs and the comparison of two empirical distributions allow us to conclude that the model based on the CNN can be verified and accepted for use in the search for particles in a fluid medium. The accuracy of the model was AP@50 = 89% and AP@75 = 78%.

7.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374604

RESUMO

One of the most promising ways to solve the problem of reducing the rate of depletion of natural non-renewable components of concrete is their complete or partial replacement with renewable plant counterparts that are industrial and agricultural waste. The research significance of this article lies in the determination at the micro- and macro-levels of the principles of the relationship between the composition, the process of structure formation and the formation of properties of concrete based on coconut shells (CSs), as well as the substantiation at the micro- and macro-levels of the effectiveness of such a solution from the point of view of fundamental and applied materials science. The aim of this study was to solve the problem of substantiating the feasibility of concrete consisting of a mineral cement-sand matrix and aggregate in the form of crushed CS, as well as finding a rational combination of components and studying the structure and characteristics of concrete. Test samples were manufactured with a partial substitution of natural coarse aggregate with CS in an amount from 0% to 30% in increments of 5% by volume. The following main characteristics have been studied: density, compressive strength, bending strength and prism strength. The study used regulatory testing and scanning electron microscopy. The density of concrete decreased to 9.1% with increasing the CS content to 30%. The highest values for the strength characteristics and coefficient of construction quality (CCQ) were recorded for concretes containing 5% CS: compressive strength-38.0 MPa, prism strength-28.9 MPa, bending strength-6.1 MPa and CCQ-0.01731 MPa × m3/kg. The increase in compressive strength was 4.1%, prismatic strength-4.0%, bending strength-3.4% and CCQ-6.1% compared with concrete without CS. Increasing the CS content from 10% to 30% inevitably led to a significant drop in the strength characteristics (up to 42%) compared with concrete without CS. Analysis of the microstructure of concrete containing CS instead of part of the natural coarse aggregate revealed that the cement paste penetrates into the pores of the CS, thereby creating good adhesion of this aggregate to the cement-sand matrix.

8.
Materials (Basel) ; 16(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241419

RESUMO

The concept of sustainable development provides for the search for environmentally friendly alternatives to traditional materials and technologies that would reduce the amount of CO2 emissions into the atmosphere, do not pollute the environment, and reduce energy costs and the cost of production processes. These technologies include the production of geopolymer concretes. The purpose of the study was a detailed in-depth analytical review of studies of the processes of structure formation and properties of geopolymer concretes in retrospect and the current state of the issue. Geopolymer concrete is a suitable, environmentally friendly and sustainable alternative to concrete based on ordinary Portland cement (OPC) with higher strength and deformation properties due to its more stable and denser aluminosilicate spatial microstructure. The properties and durability of geopolymer concretes depend on the composition of the mixture and the proportions of its components. A review of the mechanisms of structure formation, the main directions for the selection of compositions and processes of polymerization of geopolymer concretes has been made. The technologies of combined selection of the composition of geopolymer concrete, production of nanomodified geopolymer concrete, 3D printing of building structures from geopolymer concrete, and monitoring the state of structures using self-sensitive geopolymer concrete are considered. Geopolymer concrete with the optimal ratio of activator and binder has the best properties. Geopolymer concretes with partial replacement of OPC with aluminosilicate binder have a denser and more compact microstructure due to the formation of a large amount of calcium silicate hydrate, which provides improved strength, durability, less shrinkage, porosity and water absorption. An assessment of the potential reduction in greenhouse gas emissions from the production of geopolymer concrete compared to the production of OPC has been made. The potential of using geopolymer concretes in construction practice is assessed in detail.

9.
Materials (Basel) ; 16(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110093

RESUMO

Currently, there is great interest in geopolymer composites as an alternative and environmentally friendly basis for compositions for restoring the facades of historical and modern buildings. Although the use of these compounds is much smaller than conventional concrete, replacing their main components with ecological geopolymer counterparts still has the potential to significantly reduce the carbon footprint and reduce the amount of greenhouse gas emitted into the atmosphere. The study aimed to obtain geopolymer concrete with improved physical, mechanical, and adhesive characteristics, designed to restore the finishing of building facades. Regulatory methods, chemical analysis, and scanning electron microscopy were applied. The most optimal dosages of additives of ceramic waste powder (PCW) and polyvinyl acetate (PVA) have been established, at which geopolymer concretes have the best characteristics: 20% PCW introduced into the geopolymer instead of a part of metakaolin, and 6% PVA. The combined use of PCW and PVA additives in optimal dosages provides the maximum increase in strength and physical characteristics. Compressive strength increased by up to 18%, bending strength increased by up to 17%, water absorption of geopolymer concretes decreased by up to 54%, and adhesion increased by up to 9%. The adhesion of the modified geopolymer composite is slightly better with a concrete base than with a ceramic one (up to 5%). Geopolymer concretes modified with PCW and PVA additives have a denser structure with fewer pores and microcracks. The developed compositions are applicable for the restoration of facades of buildings and structures.

10.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837382

RESUMO

The partial replacement of the mineral components of concrete with natural renewable analogues in full possession of the performance characteristics of the final material, allows not only the concrete-production process to be made more environmentally friendly and inexpensive, but also to solve an important task for the agricultural industry, which is that associated with waste disposal. The scientific novelty of the work is in the obtaining of new concrete compositions by the partial replacement of coarse aggregate with a natural analogue in the form of a walnut shell, which has the maximum ratio of the strength of the composite to its density, as well as in identifying new dependencies of strength and density and their ratio on the amount of replacement of mineral coarse-aggregate walnut shell. The main goal of this article was to analyze the effect of composition factors on characteristics of concrete with partial replacement of large aggregates with walnut shells and to search for the optimal compound that would make it possible to obtain concrete with a minimum decrease in strength characteristics with a maximum decrease in concrete density. Cubes and prism laboratory samples were made from concrete of normal density with the replacement of coarse aggregate by 5, 10, 15, 20, 25 and 30%, by volume. The main mechanical properties, such as density, strength (compressive, tensile, tensile strength in bending) of the concrete samples were studied. The investigation used standard methods and scanning electron microscopy. An increase into strength characteristics up to 3.5%, as well as the maximum ratio of strength to density of concrete, was observed at a walnut-shell dosage of 5%. Effective partial replacement of coarse aggregate with walnut shells leads to a reduction in the consumption of crushed stone by up to 10% and a decrease in the mass of concrete by up to 6%.

11.
Materials (Basel) ; 15(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234080

RESUMO

Currently, one of the topical areas of application of artificial intelligence methods in industrial production is neural networks, which allow for predicting the performance properties of products and structures that depend on the characteristics of the initial components and process parameters. The purpose of the study was to develop and train a neural network and an ensemble model to predict the mechanical properties of lightweight fiber-reinforced concrete using the accumulated empirical database and data from construction industry enterprises, and to improve production processes in the construction industry. The study applied deep learning and an ensemble of regression trees. The empirical base is the result of testing a series of experimental compositions of fiber-reinforced concrete. The predicted properties are cubic compressive strength, prismatic compressive strength, flexural tensile strength, and axial tensile strength. The quantitative picture of the accuracy of the applied methods for strength characteristics varies for the deep neural network method from 0.15 to 0.73 (MAE), from 0.17 to 0.89 (RMSE), and from 0.98% to 6.62% (MAPE), and for the ensemble of regression trees, from 0.11 to 0.62 (MAE), from 0.15 to 0.80 (RMSE), and from 1.30% to 3.4% (MAPE). Both methods have shown high efficiency in relation to such a hard-to-predict material as concrete, which is so heterogeneous in structure and depends on many factors. The value of the developed models lies in the possibility of obtaining additional useful information in the process of preparing highly functional lightweight fiber-reinforced concrete without additional experiments.

12.
Polymers (Basel) ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297976

RESUMO

Some of the primary problems of construction are brittleness and low the mechanical properties of good thermal insulation materials. Heat-insulating foam concrete has a low thermal conductivity. However, it is practically impossible to transport it over long distances since corners are cracked during transportation, the structure is broken, and, in principle, the fragility of this material is a big problem for modern buildings. The purpose of this study was to develop a heat-insulating foam concrete with improved characteristics by experimentally selecting the optimal dosage of polypropylene fiber and a nanomodifying microsilica additive. Standard methods for determining the characteristics of fiber foam concrete were used as well as the method of optical microscopy to study the structure of the composite. It has been established that the use of polypropylene fiber with the optimal reinforcement range from 1% to 3% allows us to achieve an improvement in the mechanical and physical characteristics of fiber foam concrete. The optimal dosage of the nanomodifier introduced instead of a part of the binder (10%) and polypropylene fiber (2%) by weight of the binder was determined. The maximum values of increments in mechanical characteristics were 44% for compressive strength and 73% for tensile strength in bending. The values of the thermal conductivity coefficient at optimal dosages of the nanomodifier and fiber decreased by 9%. The absence of microcracking at the phase boundary between the polypropylene fiber and the hardened cement-sand matrix due to nanomodification was noted.

13.
Gels ; 8(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36135242

RESUMO

Fundamental knowledge of the processes of cement gel formation for new generation concretes is a scientific deficit. Studies aimed at the formation of a cement gel for standard vibrated concrete research, and especially for centrifugally compacted concrete, are of interest because the structure of this concrete differs significantly from the structure of standard vibrated concrete. This article aims to study the fundamental dependencies of the theoretical and practical values that occur during compaction using vibration, as well as the centrifugal force of new emerging concrete structures. New theoretical findings about the processes of cement gel formation for three technologies were developed: vibrating, centrifuging, and vibrocentrifuging of concrete; the fundamental difference in gel formation has been determined, the main physical and chemical processes were described, and a significant effect of technology on the gel formation process was established. The influence of indirect characteristics based on the processes of cement gel formation, rheological properties of concrete mixtures, water squeezing processes, and the ratio between the liquid and solid phases in the mixture was evaluated. The process of formation of cement gel for centrifugally compacted cement systems was studied and graphical dependences were constructed, giving answers to the mechanism of interaction according to the principle "composition-rheological characteristics-structure-properties of concrete". The quantitative aspect of the achieved result is expressed in the increase in the indicators demonstrated by centrifuged and especially vibrocentrifuged samples compared to vibrated ones. Additionally, in terms of strength indicators, vibrocentrifuged samples demonstrated an increase from 22% to 32%, depending on the type of strength, and the rheological characteristics of concrete mixes differed by 80% and 300% in terms of delamination.

14.
Polymers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015593

RESUMO

The use of polymer-composite materials for strengthening the reinforcing of concrete structures represents a current scientific trend. The article is devoted to experimental studies of the strength of inclined sections of bent concrete elements, reinforced with transverse polymer reinforcement with initial inclined cracks, with different shear spans and transverse reinforcement options. The characteristics of reinforced concrete specimens with initial inclined cracks and the test results of 22 experimental beams, each of which was tested twice, are given. A significant influence of all eight variable factors was established: three spans of the section, equal to 1.5 h0; 2 h0 and 2.5 h0; two types of compound clamps and their layout; and opening width of oblique cracks from 0.6 to 0.9 mm. It is shown that the strengthening of the beams supporting sections with external polymer reinforcement using three-sided U-shaped and vertical double-sided stirrups significantly changes their stress-strain state (SSS) and the form of destruction. SSS transforms from the classical destruction of the compressed zone above the end of the inclined crack to the destruction of the beam zone of average height at α = 2.0 and brittle crushing of concrete in the tension zone. Unfavorable combinations of force and geometric factors are revealed. Recommendations are proposed that can be used for structures operated in all weather conditions.

15.
Polymers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956566

RESUMO

One of the disadvantages of reinforced concrete is the large weight of structures due to the steel reinforcement. A way to overcome this issue and develop new types of reinforcing elements is by using polymer composite reinforcement, which can successfully compensate for the shortcomings of steel reinforcement. Additionally, a promising direction is the creation of variotropic (transversely isotropic) building elements. The purpose of this work was to numerically analyze improved short bending concrete elements with a variotropic structure reinforced with polymer composite rods and to determine the prospects for the further extension of the results obtained for long-span structures. Numerical models of beams of a transversally isotropic structure with various types of reinforcement have been developed in a spatially and physically nonlinear formulation in ANSYS software considering cracking and crashing. It is shown that, in combination with a stronger layer of the compressed zone of the beam, carbon composite reinforcement has advantages and provides a greater bearing capacity than glass or basalt composite. It has been proven that the use of the integral characteristics of concrete and the deflections of the elements are greater than those when using the differential characteristics of concrete along the height of the section (up to 5%). The zones of the initiation and propagation of cracks for different polymer composite reinforcements are determined. An assessment of the bearing capacity of the beam is given. A significant (up to 146%) increase in the forces in the reinforcing bars and a decrease in tensile stresses (up to 210-230%) were established during the physically non-linear operation of the concrete material. The effect of a clear redistribution of stresses is in favor of elements with a variotropic cross section in height.

16.
Materials (Basel) ; 15(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744311

RESUMO

Currently, in civil engineering, the relevant direction is to minimize the cost of the manufacture of the hollow structures of annular sections, as well as their construction and installation efficiency. To optimize the costs associated with building products and structures, it is proposed to apply the technology of vibrocentrifugation, to reconsider and comprehensively approach the raw materials for the manufacture of such products and structures. The purpose of this study is a theoretical substantiation and experimental verification with analytical numerical confirmation of the possibility of creating improved variotropic structures of vibrocentrifuged concrete nano-modified with ground granulated blast-furnace slag. The study used the methods of electron microscopy, laser granulometry, and X-ray diffraction. Slag activation was carried out in a planetary ball mill; samples were prepared on a special installation developed by the authors-a vibrocentrifuge. The optimal and effective prescription-technological factors were experimentally derived and confirmed at the microlevel using structural analysis. The mathematical dependencies among the composition, macrostructure, microstructure, and final properties of vibrocentrifuged concrete nano-modified by slag are determined. Empirical relationships were identified to express the variation of some mechanical parameters and identify the relationship between them and the composition of the mixture. The optimal dosage of slag was determined, which is 40%. Increases in strength indicators ranged from 16% to 27, density-3%.

17.
Polymers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745902

RESUMO

An essential problem of current construction engineering is the search for ways to obtain lightweight building structures with improved characteristics. The relevant way is the use of polymer composite reinforcement and concrete with high classes and prime characteristics. The purpose of this work is the theoretical and experimental substantiation of the effectiveness of combined-reinforced glass fiber polymer composite concrete (GFPCC) bending elements, and new recipe, technological and design solutions. We theoretically and experimentally substantiated the effectiveness of GFPCC bending elements from the point of view of three aspects: prescription, technological and constructive. An improvement in the structure and characteristics of glass fiber-reinforced concrete and GFPCC bending elements of a new type has been proven: the compressive strength of glass fiber-reinforced concrete has been increased up to 20%, and the efficiency of GFPCC bending elements is comparable to the concrete bending elements with steel reinforcement of class A1000 and higher. An improvement in the performance of the design due to the synergistic effect of fiber reinforcement of bending elements in combination with polymer composite reinforcement with rods was revealed. The synergistic effect with optimal recipe and technological parameters is due to the combined effect of dispersed fiber, which strengthens concrete at the micro level, and polymer composite reinforcement, which significantly increases the bearing capacity of the element at the macro level. Analytical dependences of the type of functions of the characteristics of bent concrete structures on the arguments-the parameters of the combined reinforcement with fiber and polymer composite reinforcement-are proposed. The synergistic effect of such a development is described, a new controlled significant coefficient of synergistic efficiency of combined reinforcement is proposed. From an economic point of view, the cost of the developed elements has been reduced and is economically more profitable (up to 300%).

18.
Gels ; 8(6)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35735690

RESUMO

One of the most science-intensive and developing areas is nano-modified concrete. Its characteristics of high-strength, high density, and improved structure, which is not only important at the stage of monitoring their performance, but also at the manufacturing stage, characterize high-performance concrete. The aim of this study is to obtain new theoretical knowledge and experimental-applied dependencies arising from the "composition-microstructure-properties" ratio of high-strength concretes with a nano-modifying additive of the most effective type. The methods of laser granulometry and electron microscopy are applied. The existing concepts from the point of view of theory and practice about the processes of cement gel formation during the creation of nano-modified high-strength concretes with nano-modifying additives are developed. The most rational mode of the nano-modification of high-strength concretes is substantiated as follows: microsilica ground to nanosilica within 12 h. A complex nano-modifier containing nanosilica, superplasticizer, hyperplasticizer, and sodium sulfate was developed. The most effective combination of the four considered factors are: the content of nanosilica is 4% by weight of cement; the content of the superplasticizer additive is 1.4% by weight of cement; the content of the hyperplasticizer additive is 3% by weight of cement; and the water-cement ratio-0.33. The maximum difference of the strength characteristics in comparison with other combinations ranged from 45% to 57%.

19.
Polymers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35566925

RESUMO

Currently, there is a scientific and practical deficit in new methods of integrated technological and design solutions based on improving the properties of concrete as the primary material that perceives compressive loads, and its joint work with various types of reinforcing rods. A new system using an integrated engineering approach to the design of building structures is proposed, which involves minimizing their cost and weight through numerical simulations and an experimental verification of the operation of reinforcing bars made of various materials in concrete of various densities. The control of the bearing capacity of reinforced building structures on the example of compressed elements is proposed to be carried out using the developed recipe-technological methods at the manufacturing stage. The economic and environmental efficiency of nano modification with the help of production waste and the use of lightweight dispersion-reinforced concrete to obtain such structures was revealed. The most effective concrete formulations showed strength gains ranging from 10% to 34%. Ultimately, this led to an increase in the bearing capacity of the elements up to 30%. The application of such an integrated lean approach will allow saving up to 20% of resources during construction.

20.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454432

RESUMO

Promising areas of concrete material science are maximum greening, reducing the carbon footprint, and, at the same time, solving the problems of increasing the cost of raw materials using industrial waste as modifiers for self-compacting concrete mixtures. This study aimed to review, investigate and test from the point of view of theory and practice the possibility of using various industrial types as a nano-modifier in self-compacting concrete with improved performance. The possibility of nano-modification of self-compacting concrete with a complex modifier based on industrial waste has been proved and substantiated theoretically and experimentally. The possibility of improving the technological properties of concrete mixtures using such nanomodifiers was confirmed. The recipe and technological parameters of the process were revealed and their influence on the characteristics of concrete mixes and concretes were expressed and determined. Experimental technological and mathematical dependencies between the characteristics of the technological process and raw materials and the characteristics of concrete mixtures and concretes were determined. The optimization of these parameters was carried out, a theoretical substantiation of the obtained results was proposed, and a quantitative picture was presented, expressed in the increment of the properties of self-compacting concrete mixtures using nano-modifiers from industrial waste concretes based on them. The mobility of the concrete mixture increased by 12%, and the fluidity of the mixture increased by 83%. In relation to the control composition, the concrete strength increased by 19%, and the water resistance of concrete increased by 22%. The ultimate strains decreased by 14%, and elastic modulus increased by 11%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA