Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 623(7989): 1026-1033, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993716

RESUMO

Human immunodeficiency virus 1 (HIV-1) infection is initiated by binding of the viral envelope glycoprotein (Env) to the cell-surface receptor CD41-4. Although high-resolution structures of Env in a complex with the soluble domains of CD4 have been determined, the binding process is less understood in native membranes5-13. Here we used cryo-electron tomography to monitor Env-CD4 interactions at the membrane-membrane interfaces formed between HIV-1 and CD4-presenting virus-like particles. Env-CD4 complexes organized into clusters and rings, bringing the opposing membranes closer together. Env-CD4 clustering was dependent on capsid maturation. Subtomogram averaging and classification revealed that Env bound to one, two and finally three CD4 molecules, after which Env adopted an open state. Our data indicate that asymmetric HIV-1 Env trimers bound to one and two CD4 molecules are detectable intermediates during virus binding to host cell membranes, which probably has consequences for antibody-mediated immune responses and vaccine immunogen design.


Assuntos
Antígenos CD4 , Membrana Celular , Proteína gp120 do Envelope de HIV , HIV-1 , Multimerização Proteica , Humanos , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Antígenos CD4/química , Antígenos CD4/metabolismo , Antígenos CD4/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/ultraestrutura , Infecções por HIV/virologia , HIV-1/química , HIV-1/ultraestrutura , Vírion/química , Vírion/metabolismo , Vírion/ultraestrutura
2.
Nat Struct Mol Biol ; 29(11): 1080-1091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344847

RESUMO

Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.


Assuntos
Anticorpos Neutralizantes , HIV-1 , Animais , Microscopia Crioeletrônica , Macaca mulatta/metabolismo , HIV-1/metabolismo , Tomografia com Microscopia Eletrônica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV
3.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597757

RESUMO

Genetically barcoded viral populations are powerful tools for evaluating the overall viral population structure as well as assessing the dynamics and evolution of individual lineages in vivo over time. Barcoded viruses are generated by inserting a small, genetically unique tag into the viral genome, which is retained in progeny virus. We recently reported barcoding the well-characterized molecular clone simian immunodeficiency virus (SIV) SIVmac239, resulting in a synthetic swarm (SIVmac239M) containing approximately 10,000 distinct viral clonotypes for which all genetic differences were within a 34-base barcode that could be tracked using next-generation deep sequencing. Here, we assessed the population size, distribution, and authenticity of individual viral clonotypes within this synthetic swarm using samples from 120 rhesus macaques infected intravenously. The number of replicating barcodes in plasma correlated with the infectious inoculum dose, and the primary viral growth rate was similar in all infected animals regardless of the inoculum size. Overall, 97% of detectable clonotypes in the viral stock were identified in the plasma of at least one infected animal. Additionally, we prepared a second-generation barcoded SIVmac239 stock (SIVmac239M2) with over 16 times the number of barcoded variants of the original stock and an additional barcoded stock with suboptimal nucleotides corrected (SIVmac239Opt5M). We also generated four barcoded stocks from subtype B and C simian-human immunodeficiency virus (SHIV) clones. These new SHIV clones may be particularly valuable models to evaluate Env-targeting approaches to study viral transmission or viral reservoir clearance. Overall, this work further establishes the reliability of the barcoded virus approach and highlights the feasibility of adapting this technique to other viral clones.IMPORTANCE We recently developed and published a description of a barcoded simian immunodeficiency virus that has a short random sequence inserted directly into the viral genome. This allows for the tracking of individual viral lineages with high fidelity and ultradeep sensitivity. This virus was used to infect 120 rhesus macaques, and we report here the analysis of the barcodes of these animals during primary infection. We found that the vast majority of barcodes were functional in vivo We then expanded the barcoding approach in a second-generation SIVmac239 stock (SIVmac239M2) with over 16 times the number of barcoded variants of the original stock and a barcoded stock of SIVmac239Opt5M whose sequence had 5 changes from the wild-type SIVmac239 sequence. We also generated 4 barcoded stocks from subtype B and C SHIV clones each containing a human immunodeficiency virus (HIV) type 1 envelope. These virus models are functional and can be useful for studying viral transmission and HIV cure/reservoir research.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Genoma Viral , HIV-1/genética , Mutagênese Insercional , RNA Viral/genética , Vírus Reordenados/genética , Vírus da Imunodeficiência Símia/genética , Animais , Marcadores Genéticos , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macaca mulatta , Filogenia , RNA Viral/classificação , Vírus Reordenados/classificação , Vírus Reordenados/imunologia , Reprodutibilidade dos Testes , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/imunologia , Carga Viral , Replicação Viral
4.
Cell Rep ; 24(8): 1958-1966.e5, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134158

RESUMO

Many broadly neutralizing antibodies (bnAbs) against HIV-1 recognize and/or penetrate the glycan shield on native, virion-associated envelope glycoprotein (Env) spikes. The same bnAbs also bind to recombinant, soluble trimeric immunogens based on the SOSIP design. While SOSIP trimers are close structural and antigenic mimics of virion Env, the extent to which their glycan structures resemble ones on infectious viruses is undefined. Here, we compare the overall glycosylation of gp120 and gp41 subunits from BG505 (clade A) virions produced in a lymphoid cell line with those from recombinant BG505 SOSIP trimers, including CHO-derived clinical grade material. We also performed detailed site-specific analyses of gp120. Glycans relevant to key bnAb epitopes are generally similar on the recombinant SOSIP and virion-derived Env proteins, although the latter do contain hotspots of elevated glycan processing. Knowledge of native versus recombinant Env glycosylation will guide vaccine design and manufacturing programs.


Assuntos
HIV-1/imunologia , Vírion/metabolismo , Glicosilação , Humanos
5.
AIDS Res Hum Retroviruses ; 34(11): 993-1001, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29869527

RESUMO

Although effective for suppressing viral replication, combination antiretroviral treatment (cART) does not represent definitive therapy for HIV infection due to persistence of replication-competent viral reservoirs. The advent of effective cART regimens for simian immunodeficiency virus (SIV)-infected nonhuman primates (NHP) has enabled the development of relevant models for studying viral reservoirs and intervention strategies targeting them. Viral reservoir measurements are crucial for such studies but are problematic. Quantitative polymerase chain reaction (PCR) assays overestimate the size of the replication competent viral reservoir, as not all detected viral genomes are intact. Quantitative viral outgrowth assays measure replication competence, but they suffer from limited precision and dynamic range, and require large numbers of cells. Ex vivo virus induction assays to detect cells harboring inducible virus represent an experimental middle ground, but detection of inducible viral RNA in such assays does not necessarily indicate production of virions, while detection of more immunologically relevant viral proteins, including p27CA, by conventional enzyme-linked immunosorbent assays (ELISA) lacks sensitivity. An ultrasensitive digital SIV Gag p27 assay was developed, which is 100-fold more sensitive than a conventional ELISA. In ex vivo virus induction assays, the quantification of SIV Gag p27 produced by stimulated CD4+ T cells from rhesus macaques receiving cART enabled earlier and more sensitive detection than conventional ELISA-based approaches and was highly correlated with SIV RNA, as measured by quantitative reverse transcription PCR. This ultrasensitive p27 assay provides a new tool to assess ongoing replication and reactivation of infectious virus from reservoirs in SIV-infected NHP.


Assuntos
Produtos do Gene gag/análise , Imunoensaio/métodos , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Animais , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Modelos Animais de Doenças , Produtos do Gene gag/imunologia , Imunoensaio/normas , Macaca mulatta , RNA Viral/análise , RNA Viral/genética , Sensibilidade e Especificidade , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Ativação Viral
6.
Sci Rep ; 6: 32956, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604319

RESUMO

The surface envelope glycoprotein (SU) of Human immunodeficiency virus type 1 (HIV-1), gp120(SU) plays an essential role in virus binding to target CD4+ T-cells and is a major vaccine target. Gp120 has remarkably high levels of N-linked glycosylation and there is considerable evidence that this "glycan shield" can help protect the virus from antibody-mediated neutralization. In recent years, however, it has become clear that gp120 glycosylation can also be included in the targets of recognition by some of the most potent broadly neutralizing antibodies. Knowing the site-specific glycosylation of gp120 can facilitate the rational design of glycopeptide antigens for HIV vaccine development. While most prior studies have focused on glycan analysis of recombinant forms of gp120, here we report the first systematic glycosylation site analysis of gp120 derived from virions produced by infected T lymphoid cells and show that a single site is exclusively substituted with complex glycans. These results should help guide the design of vaccine immunogens.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/metabolismo , Reações Antígeno-Anticorpo , Sítios de Ligação , Sequência de Carboidratos , Linhagem Celular , Genoma Viral , Glicosilação , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , HIV-1/química , Humanos , Oligossacarídeos/química , Oligossacarídeos/imunologia , Polissacarídeos/química , Polissacarídeos/imunologia , Ligação Proteica , Estrutura Secundária de Proteína , Proteoma/química , Proteoma/genética , Proteoma/imunologia , Proteômica
7.
Nat Commun ; 6: 5854, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25569620

RESUMO

The formation of the HIV-1 core is the final step in the viral maturation pathway, resulting in the formation of infectious virus. Most current models for HIV-1 core formation suggest that, upon proteolytic cleavage from the immature Gag, capsid (CA) dissociates into the viral interior before reforming into the core. Here we present evidence for an alternate view of core formation by taking advantage of our serendipitous observation of large membrane-enclosed structures in HIV-1 supernatants from infected cells. Cryo-electron tomographic studies show that these structures, which contain ordered arrays of what is likely the membrane-associated matrix protein, contain multiple cores that can be captured at different stages of maturation. Our studies suggest that HIV maturation involves a non-diffusional phase transition in which the detaching layer of the cleaved CA lattice is gradually converted into a roll that ultimately forms the surface of the mature conical core.


Assuntos
HIV-1/fisiologia , Modelos Biológicos , Montagem de Vírus/fisiologia , Capsídeo/fisiologia , Linhagem Celular , Centrifugação com Gradiente de Concentração , Microscopia Crioeletrônica , Humanos , Microscopia Eletrônica de Transmissão , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(8): 2975-80, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23359688

RESUMO

We have previously shown that macaques vaccinated with DNA vectors expressing SIVmac239 antigens developed potent immune responses able to reduce viremia upon high-dose SIVmac251 challenge. To further improve vaccine-induced immunity and protection, we combined the SIVmac239 DNA vaccine with protein immunization using inactivated SIVmac239 viral particles as protein source. Twenty-six weeks after the last vaccination, the animals were challenged intrarectally at weekly intervals with a titrated dose of the heterologous SIVsmE660. Two of DNA-protein coimmunized macaques did not become infected after 14 challenges, but all controls were infected by 11 challenges. Vaccinated macaques showed modest protection from SIVsmE660 acquisition compared with naïve controls (P = 0.050; stratified for TRIM5α genotype). Vaccinees had significantly lower peak (1.6 log, P = 0.0048) and chronic phase viremia (P = 0.044), with 73% of the vaccinees suppressing viral replication to levels below assay detection during the 40-wk follow-up. Vaccine-induced immune responses associated significantly with virus control: binding antibody titers and the presence of rectal IgG to SIVsmE660 Env correlated with delayed SIVsmE660 acquisition; SIV-specific cytotoxic T cells, prechallenge CD4(+) effector memory, and postchallenge CD8(+) transitional memory cells correlated with control of viremia. Thus, SIVmac239 DNA and protein-based vaccine protocols were able to achieve high, persistent, broad, and effective cellular and humoral immune responses able to delay heterologous SIVsmE660 infection and to provide long-term control of viremia. These studies support a role of DNA and protein-based vaccines for development of an efficacious HIV/AIDS vaccine.


Assuntos
DNA Viral/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas Virais/imunologia , Viremia/prevenção & controle , Vírion/imunologia , Animais , Anticorpos Antivirais/biossíntese , DNA Viral/administração & dosagem , Imunidade Celular , Imunoglobulina G/imunologia , Macaca mulatta , Reto/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/economia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral , Vacinas Virais/administração & dosagem
9.
J Virol ; 86(6): 3152-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22238316

RESUMO

Although xenotropic murine leukemia virus-related virus (XMRV) has been previously linked to prostate cancer and myalgic encephalomyelitis/chronic fatigue syndrome, recent data indicate that results interpreted as evidence of human XMRV infection reflect laboratory contamination rather than authentic in vivo infection. Nevertheless, XMRV is a retrovirus of undefined pathogenic potential that is able to replicate in human cells. Here we describe a comprehensive analysis of two male pigtailed macaques (Macaca nemestrina) experimentally infected with XMRV. Following intravenous inoculation with >10(10) RNA copy equivalents of XMRV, viral replication was limited and transient, peaking at ≤2,200 viral RNA (vRNA) copies/ml plasma and becoming undetectable by 4 weeks postinfection, though viral DNA (vDNA) in peripheral blood mononuclear cells remained detectable through 119 days of follow-up. Similarly, vRNA was not detectable in lymph nodes by in situ hybridization despite detectable vDNA. Sequencing of cell-associated vDNA revealed extensive G-to-A hypermutation, suggestive of APOBEC-mediated viral restriction. Consistent with limited viral replication, we found transient upregulation of type I interferon responses that returned to baseline by 2 weeks postinfection, no detectable cellular immune responses, and limited or no spread to prostate tissue. Antibody responses, including neutralizing antibodies, however, were detectable by 2 weeks postinfection and maintained throughout the study. Both animals were healthy for the duration of follow-up. These findings indicate that XMRV replication and spread were limited in pigtailed macaques, predominantly by APOBEC-mediated hypermutation. Given that human APOBEC proteins restrict XMRV infection in vitro, human XMRV infection, if it occurred, would be expected to be characterized by similarly limited viral replication and spread.


Assuntos
Modelos Animais de Doenças , Macaca nemestrina , Infecções por Retroviridae/virologia , Replicação Viral , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/fisiologia , Animais , Anticorpos Antivirais/imunologia , Humanos , Masculino , Filogenia , Infecções por Retroviridae/imunologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/classificação , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética
10.
J Virol ; 85(23): 12114-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937655

RESUMO

The trimeric envelope glycoprotein (Env) spikes displayed on the surfaces of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) virions are composed of three heterodimers of the viral glycoproteins gp120 and gp41. Although binding of gp120 to cell surface CD4 and a chemokine receptor is known to elicit conformational changes in gp120 and gp41, changes in quaternary structure of the trimer have only recently been elucidated. For the HIV-1 BaL isolate, CD4 attachment results in a striking rearrangement of the trimer from a "closed" to an "open" conformation. The effect of CD4 on SIV trimers, however, has not been described. Using cryo-electron tomography, we have now determined molecular architectures of the soluble CD4 (sCD4)-bound states of SIV Env trimers for three different strains (SIVmneE11S, SIVmac239, and SIV CP-MAC). In marked contrast to HIV-1 BaL, SIVmneE11S and SIVmac239 Env showed only minor conformational changes following sCD4 binding. In SIV CP-MAC, where trimeric Env displays a constitutively "open" conformation similar to that seen for HIV-1 BaL Env in the sCD4-complexed state, we show that there are no significant further changes in conformation upon the binding of either sCD4 or 7D3 antibody. The density maps also show that 7D3 and 17b antibodies target epitopes on gp120 that are on opposites sides of the coreceptor binding site. These results provide new insights into the structural diversity of SIV Env and show that there are strain-dependent variations in the orientation of sCD4 bound to trimeric SIV Env.


Assuntos
Antígenos CD4/química , Antígenos CD4/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Humanos , Glicoproteínas de Membrana/imunologia , Modelos Moleculares , Estrutura Quaternária de Proteína , Receptores CCR5/imunologia , Receptores CCR5/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/imunologia , Internalização do Vírus
11.
Proc Natl Acad Sci U S A ; 107(45): 19248-53, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20974908

RESUMO

All retroviral genomic RNAs contain a cis-acting packaging signal by which dimeric genomes are selectively packaged into nascent virions. However, it is not understood how Gag (the viral structural protein) interacts with these signals to package the genome with high selectivity. We probed the structure of murine leukemia virus RNA inside virus particles using SHAPE, a high-throughput RNA structure analysis technology. These experiments showed that NC (the nucleic acid binding domain derived from Gag) binds within the virus to the sequence UCUG-UR-UCUG. Recombinant Gag and NC proteins bound to this same RNA sequence in dimeric RNA in vitro; in all cases, interactions were strongest with the first U and final G in each UCUG element. The RNA structural context is critical: High-affinity binding requires base-paired regions flanking this motif, and two UCUG-UR-UCUG motifs are specifically exposed in the viral RNA dimer. Mutating the guanosine residues in these two motifs--only four nucleotides per genomic RNA--reduced packaging 100-fold, comparable to the level of nonspecific packaging. These results thus explain the selective packaging of dimeric RNA. This paradigm has implications for RNA recognition in general, illustrating how local context and RNA structure can create information-rich recognition signals from simple single-stranded sequence elements in large RNAs.


Assuntos
Produtos do Gene gag/metabolismo , Genoma Viral/fisiologia , RNA Viral/metabolismo , Retroviridae/fisiologia , Montagem de Vírus , Animais , Sequência de Bases , Sítios de Ligação , Produtos do Gene gag/fisiologia , Vírus da Leucemia Murina/fisiologia , Camundongos , Ligação Proteica , Retroviridae/genética
12.
Proc Natl Acad Sci U S A ; 107(30): 13336-41, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624966

RESUMO

The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission.


Assuntos
Células Dendríticas/virologia , HIV/fisiologia , Linfócitos T/virologia , Vírion/fisiologia , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/ultraestrutura , Células Apresentadoras de Antígenos/virologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD4-Positivos/virologia , Comunicação Celular , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Linfócitos T/metabolismo , Linfócitos T/ultraestrutura
13.
PLoS Pathog ; 6(12): e1001249, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21203482

RESUMO

The initial step in target cell infection by human, and the closely related simian immunodeficiency viruses (HIV and SIV, respectively) occurs with the binding of trimeric envelope glycoproteins (Env), composed of heterodimers of the viral transmembrane glycoprotein (gp41) and surface glycoprotein (gp120) to target T-cells. Knowledge of the molecular structure of trimeric Env on intact viruses is important both for understanding the molecular mechanisms underlying virus-cell interactions and for the design of effective immunogen-based vaccines to combat HIV/AIDS. Previous analyses of intact HIV-1 BaL virions have already resulted in structures of trimeric Env in unliganded and CD4-liganded states at ~20 Å resolution. Here, we show that the molecular architectures of trimeric Env from SIVmneE11S, SIVmac239 and HIV-1 R3A strains are closely comparable to that previously determined for HIV-1 BaL, with the V1 and V2 variable loops located at the apex of the spike, close to the contact zone between virus and cell. The location of the V1/V2 loops in trimeric Env was definitively confirmed by structural analysis of HIV-1 R3A virions engineered to express Env with deletion of these loops. Strikingly, in SIV CP-MAC, a CD4-independent strain, trimeric Env is in a constitutively "open" conformation with gp120 trimers splayed out in a conformation similar to that seen for HIV-1 BaL Env when it is complexed with sCD4 and the CD4i antibody 17b. Our findings suggest a structural explanation for the molecular mechanism of CD4-independent viral entry and further establish that cryo-electron tomography can be used to discover distinct, functionally relevant quaternary structures of Env displayed on intact viruses.


Assuntos
HIV-1/química , Estrutura Quaternária de Proteína , Vírus da Imunodeficiência Símia/química , Proteínas do Envelope Viral/química , Antígenos CD4 , Tomografia com Microscopia Eletrônica , Proteína gp120 do Envelope de HIV/química , Humanos , Especificidade da Espécie , Internalização do Vírus
14.
J Acquir Immune Defic Syndr ; 52(4): 433-42, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19779309

RESUMO

BACKGROUND: Although mucosal responses are important for preventing infections with HIV, the optimal strategies for inducing them remain unclear. To evaluate vaccine strategies targeting the oral mucosal lymphoid tissue inductive sites as an approach to provide immunity at distal sites, we vaccinated healthy macaques via the palatine/lingual tonsils with aldrithiol 2 (AT-2) inactivated Simian immunodeficiency virus (SIV)mac239, combined with CpG-C immunostimulatory oligonucleotide (CpG-C ISS-ODN, C274) as the adjuvant. METHODS: Macaques received 5 doses of C274 or control ODN C661 and AT-2 SIV on the tonsillar tissues every 6 weeks before being challenged rectally with SIVmac239, 8 weeks after the last immunization. RESULTS: Although no T-cell or B-cell responses were detected in the blood before challenge, antibody (Ab) responses were detected in the rectum. Immunization with AT-2 SIV significantly reduced the frequency of infection compared with nonimmunized controls, irrespective of adjuvant. In the vaccinated animals that became infected, peak viremias were somewhat reduced. SIV-specific responses were detected in the blood once animals became infected with no detectable differences between the differently immunized groups and the controls. CONCLUSION: This work provides evidence that vaccine immunogens applied to the oral mucosal associated lymphoid tissues can provide benefit against rectal challenge, a finding with important implications for mucosal vaccination strategies.


Assuntos
2,2'-Dipiridil/análogos & derivados , Dissulfetos/farmacologia , Oxidantes/farmacologia , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , 2,2'-Dipiridil/farmacologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/sangue , Imunidade nas Mucosas , Mucosa Intestinal , Macaca mulatta , Masculino , Mucosa Bucal , Tonsila Palatina/imunologia , Reto/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/classificação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Carga Viral , Viremia/imunologia
15.
Nature ; 460(7256): 711-6, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19661910

RESUMO

Single-stranded RNA viruses encompass broad classes of infectious agents and cause the common cold, cancer, AIDS and other serious health threats. Viral replication is regulated at many levels, including the use of conserved genomic RNA structures. Most potential regulatory elements in viral RNA genomes are uncharacterized. Here we report the structure of an entire HIV-1 genome at single nucleotide resolution using SHAPE, a high-throughput RNA analysis technology. The genome encodes protein structure at two levels. In addition to the correspondence between RNA and protein primary sequences, a correlation exists between high levels of RNA structure and sequences that encode inter-domain loops in HIV proteins. This correlation suggests that RNA structure modulates ribosome elongation to promote native protein folding. Some simple genome elements previously shown to be important, including the ribosomal gag-pol frameshift stem-loop, are components of larger RNA motifs. We also identify organizational principles for unstructured RNA regions, including splice site acceptors and hypervariable regions. These results emphasize that the HIV-1 genome and, potentially, many coding RNAs are punctuated by previously unrecognized regulatory motifs and that extensive RNA structure constitutes an important component of the genetic code.


Assuntos
Genoma Viral/genética , HIV-1/genética , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Biologia Computacional , Proteína gp120 do Envelope de HIV/genética , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Conformação Proteica , Dobramento de Proteína , Sinais Direcionadores de Proteínas/genética
16.
Nat Chem Biol ; 5(4): 244-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19234452

RESUMO

HIV-1 is a master at deceiving the immune system and usurping host biosynthetic machinery. Although HIV-1 is coated with host-derived glycoproteins, only glycosylation of viral gp120 has been described. Here we use lectin microarray technology to analyze the glycome of intact HIV-1 virions. We show that the glycan coat of human T cell line-derived HIV-1 matches that of native immunomodulatory microvesicles. The carbohydrate composition of both virus and microvesicles is cell-line dependent, which suggests a mechanism to rapidly camouflage the virus within the host. In addition, binding of both virus and microvesicles to antiviral lectins is enriched over the host cell, raising concern about targeting these glycans for therapeutics. This work also sheds light on the binding of HIV-1 to galectin-1, an important human immune lectin. Overall, our work strongly supports the theory that HIV-1 co-opts the exocytic pathway of microvesicles, thus potentially explaining why eliciting a protective antiviral immune response is difficult.


Assuntos
Carboidratos/genética , HIV-1/metabolismo , Lectinas/metabolismo , Linfócitos T/metabolismo , Carboidratos/fisiologia , Linhagem Celular , Biologia Computacional , Galectina 1/metabolismo , Perfilação da Expressão Gênica , Glicômica , HIV-1/genética , Humanos , Lectinas/genética , Manose/metabolismo , Análise em Microsséries
17.
J Virol ; 83(2): 884-95, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19004943

RESUMO

Human immunodeficiency virus (HIV) is taken up by and replicates in immature dendritic cells (imDCs), which can then transfer virus to T cells, amplifying the infection. Strategies known to boost DC function were tested for their ability to overcome this exploitation when added after HIV exposure. Poly(I:C), but not single-stranded RNA (ssRNA) or a standard DC maturation cocktail, elicited type I interferon (IFN) and interleukin-12 (IL-12) p70 production and the appearance of unique small (15- to 20-kDa) fragments of APOBEC3G (A3G) and impeded HIV(Bal) replication in imDCs when added up to 60 h after virus exposure. Comparable effects were mediated by recombinant alpha/beta IFN (IFN-alpha/beta). Neutralizing the anti-IFN-alpha/beta receptor reversed poly(I:C)-induced inhibition of HIV replication and blocked the appearance of the small A3G proteins. The poly(I:C)-induced appearance of small A3G proteins was not accompanied by significant differences in A3G mRNA or A3G monomer expression. Small interfering RNA (siRNA) knockdown of A3G could not be used to reverse the poly(I:C)-induced protective effect, since siRNAs nonspecifically activated the DCs, inducing the appearance of the small A3G proteins and inhibiting HIV infection. Notably, the appearance of small A3G proteins coincided with the shift of high-molecular-mass inactive A3G complexes to the low-molecular-mass (LMM) active A3G complexes. The unique immune stimulation by poly(I:C) with its antiviral effects on imDCs marked by the expression of IFN-alpha/beta and active LMM A3G renders poly(I:C) a promising novel strategy to combat early HIV infection in vivo.


Assuntos
Fármacos Anti-HIV/farmacologia , Citidina Desaminase/imunologia , Células Dendríticas/virologia , HIV-1/imunologia , Interferons/imunologia , Poli I-C/farmacologia , Desaminase APOBEC-3G , Células Cultivadas , Citidina Desaminase/biossíntese , Humanos , Interferons/biossíntese , Interleucina-12/biossíntese , Interleucina-12/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
18.
PLoS One ; 3(9): e3162, 2008 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-18776937

RESUMO

Anti-HIV microbicides are being investigated in clinical trials and understanding how promising strategies work, coincident with demonstrating efficacy in vivo, is central to advancing new generation microbicides. We evaluated Carraguard and a new generation Carraguard-based formulation containing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (PC-817). Since dendritic cells (DCs) are believed to be important in HIV transmission, the formulations were tested for the ability to limit DC-driven infection in vitro versus vaginal infection of macaques with RT-SHIV (SIVmac239 bearing HIV reverse transcriptase). Carraguard showed limited activity against cell-free and mature DC-driven RT-SHIV infections and, surprisingly, low doses of Carraguard enhanced infection. However, nanomolar amounts of MIV-150 overcame enhancement and blocked DC-transmitted infection. In contrast, Carraguard impeded infection of immature DCs coincident with DC maturation. Despite this variable activity in vitro, Carraguard and PC-817 prevented vaginal transmission of RT-SHIV when applied 30 min prior to challenge. PC-817 appeared no more effective than Carraguard in vivo, due to the limited activity of a single dose of MIV-150 and the dominant barrier effect of Carraguard. However, 3 doses of MIV-150 in placebo gel at and around challenge limited vaginal infection, demonstrating the potential activity of a topically applied NNRTI. These data demonstrate discordant observations when comparing in vitro and in vivo efficacy of Carraguard-based microbicides, highlighting the difficulties in testing putative anti-viral strategies in vitro to predict in vivo activity. This work also underscores the potential of Carraguard-based formulations for the delivery of anti-viral drugs to prevent vaginal HIV infection.


Assuntos
Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacologia , Carragenina/farmacologia , Inibidores da Transcriptase Reversa/administração & dosagem , Animais , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Carragenina/administração & dosagem , Células Dendríticas/virologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Humanos , Macaca , Monócitos/virologia , Inibidores da Transcriptase Reversa/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/metabolismo , Carga Viral
19.
J Acquir Immune Defic Syndr ; 48(4): 398-407, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18614931

RESUMO

Dendritic cells (DCs) are central to the innate and adaptive responses needed to control pathogens, yet HIV exploits DCs to promote infection. The influence of other pathogens on DC-HIV interplay has not been extensively studied. We used Candida albicans (Candida) as a model pathogen which elicits innate DC responses that are likely important in controlling Candida by healthy immune systems. HIV did not impede Candida-specific DC activation. Candida-induced CD80 and CD83 upregulation was greater in DCs that had captured HIV, coinciding with increased amplification in presence of T cells and reduced but persistent low-level DC infection. In contrast, HIV-infected DCs matured normally in response to Candida, but this did not shut down HIV replication in DCs, and again Candida augmented HIV amplification in DC-T-cell mixtures. HIV-infected DCs secreted more IL-10 and IL-1beta earlier than uninfected DCs and initially induced a higher frequency of CD4CD25FoxP3 T-regulatory cells in response to Candida. Elevated early IL-10 production in cocultures was evident only when azidothymidine (AZT) was included to limit T-regulatory cell infection and destruction. Therefore, HIV manipulates the DC's innate and adaptive responses to Candida to further augment HIV spread, ultimately destroying the cells needed to limit candidiasis.


Assuntos
Candida albicans , Candidíase/imunologia , Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV , Linfócitos T Reguladores/imunologia , Antígenos CD/metabolismo , Antígeno B7-1/metabolismo , Candidíase/complicações , Contagem de Células , Técnicas de Cocultura , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Fatores de Transcrição Forkhead/biossíntese , Infecções por HIV/complicações , Humanos , Imunoglobulinas/metabolismo , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Glicoproteínas de Membrana/metabolismo , Linfócitos T Reguladores/virologia , Antígeno CD83
20.
PLoS Pathog ; 3(5): e63, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17480119

RESUMO

The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV), are heterodimers of a transmembrane glycoprotein (usually gp41), and a surface glycoprotein (gp120), which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.


Assuntos
Linfócitos T CD4-Positivos/virologia , Elétrons , HIV-1/patogenicidade , Vírus da Imunodeficiência Símia/patogenicidade , Tomografia/métodos , Sítios de Ligação , Antígenos CD4/metabolismo , Antígenos CD4/fisiologia , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/fisiologia , Proteína gp41 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/fisiologia , Imageamento Tridimensional , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA