Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 31(10): 770-775, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467514

RESUMO

Neural transplantation is a promising modality for treatment of neurodegenerative diseases, traumatic brain injury and stroke. Biocompatible scaffolds with optimized properties improve the survival of transplanted neural cells and differentiation of progenitor cells into the desired types of neurons. Silk fibroin is a biocompatible material for tissue engineering. Here, we describe thin-film scaffolds based on photocrosslinked methacrylated silk fibroin (FBMA). These scaffolds exhibit an increased mechanical stiffness and improved water stability. Photocrosslinking of fibroin increased its rigidity from 25 to 480 kPa and the contact angle from 59.7 to 70.8, the properties important for differentiation of neural cells. Differentiation of SH-SY5Y neuroblastoma cells on FBMA increased the length of neurites as well as the levels of neural differentiation markers MAP2 and ßIII-tubulin. Growth of SH-SY5Y cells on the unmodified fibroin and FBMA substrates led to a spontaneous phosphorylation of Src and Akt protein kinases critical for neuronal differentiation; this effect was paralleled by neural cell adhesion molecule elevation. Thus, FBMA is an easily manufactured, cytocompatible material with improved and sustainable properties applicable for neural tissue engineering.


Assuntos
Diferenciação Celular , Fibroínas/química , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Alicerces Teciduais , Materiais Biocompatíveis , Linhagem Celular Tumoral , Células Cultivadas , Humanos
2.
Biomed Mater ; 14(3): 034102, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30726780

RESUMO

Silk fibroin is a promising biomaterial for tissue engineering due to its valuable mechanical and biological properties. However, being a natural product and a protein, it lacks the processability and uniform quality of an advanced synthetic material. Here we propose a way to overcome this contradiction using novel fibroin photocrosslinkable derivative (FBMA). FBMA was synthesized by methacrylation of native fibroin nucleophilic side groups. It was dissolved in either formic acid (FA) or hexafluoroisopropanol (HFIP), and the obtained solutions were photocrosslinked into hydrogel scaffolds of various structural forms including films, micropatterns, pads and macroporous sponges. UV-exposition of dry FBMA films through a photomask created complex microscaled patterns of the polymer. The nature of the solvent affected the properties of resulting hydrogels. When HFIP was used as the solvent, the resulting hydrogels had a storage modulus ∼4 times higher than that of hydrogels fabricated using FA and ∼20 times higher compared to the reference hydrogel obtained from pristine fibroin. Both FBMA-based hydrogels were biocompatible and supported fibroblast adhesion and growth in vitro. Cells cultivated on FBMA scaffolds produced with HFIP exhibited more spread phenotype at 4 and 24 h of cultivation, consistent with increased stiffness of the hydrogel. Hence, FBMA is an attractive material for fabrication of micropatterned scaffolds of centimeter-scale size with minutely tunable physico-chemical properties via convenient and reproducible technological processes, applicable for rapid prototyping.


Assuntos
Fibroínas/química , Hidrogéis/química , Alicerces Teciduais , Células 3T3 , Actinas/química , Animais , Materiais Biocompatíveis/química , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Citoesqueleto/química , Formiatos/química , Metacrilatos/química , Camundongos , Microscopia de Força Atômica , Fenótipo , Fotoquímica , Polímeros/química , Propanóis/química , Reologia , Seda/química , Propriedades de Superfície , Engenharia Tecidual/métodos
3.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 788-795, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770956

RESUMO

Novel quaternized polyethyleneimine and cross-linked polyethyleneimine derivatives have been synthesized using both traditional and microwave-assisted techniques to create antimicrobial coatings, with octyl, dodecyl, or hexadecyl bromides as alkylating agent and various bifunctional electrophiles as cross-linkers. Quaternization has been performed using methyl iodide or dimethyl sulfate; it has been shown that methyl iodide has no advantages over dimethyl sulfate. Antimicrobial activity of the polymers against Gram-positive (S. aureus) and Gram-negative (P. aeruginosa) bacteria has been evaluated. Antimicrobial activity declines with increase in the alkylating agent chain length. Equimolar ratio of the alkylating agent and the primary amino groups in polyethyleneimine is optimal. Although cross-linking decreases the antimicrobial activity of quaternized polyethyleneimines, it improves their "non-leaching" properties (i.e. minimizes undesirable water washout of the polymeric coatings).


Assuntos
Anti-Infecciosos/farmacologia , Reagentes de Ligações Cruzadas/química , Teste de Materiais/métodos , Polietilenoimina/química , Alquilação , Testes de Sensibilidade Microbiana , Polietilenoimina/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA