Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7852, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570624

RESUMO

CsqR (YihW) is a local transcription factor that controls expression of yih genes involved in degradation of sulfoquinovose in Escherichia coli. We recently showed that expression of the respective gene cassette might be regulated by lactose. Here, we explore the phylogenetic and functional traits of CsqR. Phylogenetic analysis revealed that CsqR had a conserved Met25. Western blot demonstrated that CsqR was synthesized in the bacterial cell as two protein forms, 28.5 (CsqR-l) and 26 kDa (CsqR-s), the latter corresponding to start of translation at Met25. CsqR-s was dramatically activated during growth with sulfoquinovose as a sole carbon source, and displaced CsqR-l in the stationary phase during growth on rich medium. Molecular dynamic simulations revealed two possible states of the CsqR-s structure, with the interdomain linker being represented by either a disordered loop or an ɑ-helix. This helix allowed the hinge-like motion of the N-terminal domain resulting in a switch of CsqR-s between two conformational states, "open" and "compact". We then modeled the interaction of both CsqR forms with putative effectors sulfoquinovose, sulforhamnose, sulfoquinovosyl glycerol, and lactose, and revealed that they all preferred the same pocket in CsqR-l, while in CsqR-s there were two possible options dependent on the linker structure.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Lactose/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955512

RESUMO

ExuR and UxuR are paralogous proteins belonging to the GntR family of transcriptional regulators. Both are known to control hexuronic acid metabolism in a variety of Gammaproteobacteria but the relative impact of each of them is still unclear. Here, we apply 2D difference electrophoresis followed by mass-spectrometry to characterise the changes in the Escherichia coli proteome in response to a uxuR or exuR deletion. Our data clearly show that the effects are different: deletion of uxuR resulted in strongly enhanced expression of D-mannonate dehydratase UxuA and flagellar protein FliC, and in a reduced amount of outer membrane porin OmpF, while the absence of ExuR did not significantly alter the spectrum of detected proteins. Consequently, the physiological roles of proteins predicted as homologs seem to be far from identical. Effects of uxuR deletion were largely dependent on the cultivation conditions: during growth with glucose, UxuA and FliC were dramatically altered, while during growth with glucuronate, activation of both was not so prominent. During the growth with glucose, maximal activation was detected for FliC. This was further confirmed by expression analysis and physiological tests, thus suggesting the involvement of UxuR in the regulation of bacterial motility and biofilm formation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Ácidos Hexurônicos/metabolismo , Proteoma/metabolismo , Fatores de Transcrição/metabolismo
3.
Protein Expr Purif ; 161: 70-77, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31054315

RESUMO

Transcription factors play a crucial role in control of life of a bacterial cell, working as switchers to a different life style or pathogenicity. To reconstruct the network of regulatory events taking place in changing growth conditions, we need to know regulons of as many transcription factors as possible, and motifs recognized by them. Experimentally this can be attained via ChIP-seq in vivo, SELEX and DNAse I footprinting in vitro. All these approaches require large amounts of purified proteins. However, overproduction of transcription factors leading to their extensive binding to the regulatory elements on the DNA make them toxic to a bacterial cell thus significantly complicating production of a soluble protein. Here, on the example of three regulators from Escherichia coli, UxuR, ExuR, and LeuO, we show that stable production of toxic transcription factors in a soluble fraction can be significantly enhanced by holding the expression of a recombinant protein back at the early stages of bacterial growth. This can be achieved by cloning genes together with their regulatory regions containing repressor sites, with subsequent growth in a very rich media where activity of excessive regulators is not crucial, followed by induction with a very low concentration of an inducer. Schemes of further purification of these proteins were developed, and functional activity was confirmed.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/toxicidade , Regulação Bacteriana da Expressão Gênica , Óperon , Fatores de Transcrição/metabolismo , Fatores de Transcrição/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA