Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1404846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774881

RESUMO

Lysosomes and lysosome related organelles (LROs) are dynamic organelles at the intersection of various pathways involved in maintaining cellular hemostasis and regulating cellular functions. Vesicle trafficking of lysosomes and LROs are critical to maintain their functions. The lysosomal trafficking regulator (LYST) is an elusive protein important for the regulation of membrane dynamics and intracellular trafficking of lysosomes and LROs. Mutations to the LYST gene result in Chédiak-Higashi syndrome, an autosomal recessive immunodeficiency characterized by defective granule exocytosis, cytotoxicity, etc. Despite eight decades passing since its initial discovery, a comprehensive understanding of LYST's function in cellular biology remains unresolved. Accumulating evidence suggests that dysregulation of LYST function also manifests in other disease states. Here, we review the available literature to consolidate available scientific endeavors in relation to LYST and discuss its relevance for immunomodulatory therapies, regenerative medicine and cancer applications.


Assuntos
Lisossomos , Proteínas de Transporte Vesicular , Humanos , Lisossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Síndrome de Chediak-Higashi/genética , Transporte Proteico , Mutação
2.
Commun Med (Lond) ; 2: 3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603301

RESUMO

Background: Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity. Methods: Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models. Results: Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks. Our models predict that early neotissue accumulation is driven primarily by inflammatory processes in response to the implanted polymeric scaffold, but that turnover becomes progressively mechano-mediated as the scaffold degrades. Using a lamb model, we confirm that early neotissue formation results primarily from the foreign body reaction induced by the scaffold, resulting in an early period of dynamic remodeling characterized by transient TEVG narrowing. As the scaffold degrades, mechano-mediated neotissue remodeling becomes dominant around 26 weeks. After the scaffold degrades completely, the resulting neovessel undergoes growth and remodeling that mimicks native vessel behavior, including biological growth capacity, further supported by fluid-structure interaction simulations providing detailed hemodynamic and wall stress information. Conclusions: These findings provide insights into TEVG remodeling, and have important implications for clinical use and future development of TEVGs for children with congenital heart disease.

3.
Tissue Eng Part A ; 27(9-10): 593-603, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32854586

RESUMO

Wall stress is often lower in tissue-engineered constructs than in comparable native tissues due to the use of stiff polymeric materials having thicker walls. In this work, we sought to design a murine arterial graft having a more favorable local mechanical environment for the infiltrating cells; we used electrospinning to enclose a compliant inner core of poly(glycerol sebacate) with a stiffer sheath of poly(caprolactone) to reduce the potential for rupture. Two scaffolds were designed that differed in the thickness of the core as previous computational simulations found that circumferential wall stresses could be increased in the core toward native values by increasing the ratio of the core:sheath. Our modified electrospinning protocols reduced swelling of the core upon implantation and eliminated residual stresses in the sheath, both of which had contributed to the occlusion of implanted grafts during pilot studies. For both designs, a subset of implanted grafts occluded due to thrombosis or ruptured due to suspected point defects in the sheath. However, there were design-based differences in collagen content and mechanical behavior during early remodeling of the patent samples, with the thinner-core scaffolds having more collagen and a stiffer behavior after 12 weeks of implantation than the thicker-core scaffolds. By 24 weeks, the thicker-core scaffolds also became stiff, with similar amounts of collagen but increased smooth muscle cell and elastin content. These data suggest that increasing wall stress toward native values may provide a more favorable environment for normal arterial constituents to form despite the overall stiffness of the construct remaining elevated due to the absolute increase in load-bearing constituents.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Artérias , Prótese Vascular , Colágeno , Elastina , Camundongos , Poliésteres
4.
Adv Healthc Mater ; 9(24): e2001094, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073543

RESUMO

Tissue engineered vascular grafts (TEVGs) are a promising technology, but are hindered by occlusion. Seeding with bone-marrow derived mononuclear cells (BM-MNCs) mitigates occlusion, yet the precise mechanism remains unclear. Seeded cells disappear quickly and potentially mediate an anti-inflammatory effect through paracrine signaling. Here, a series of reciprocal genetic TEVG implantations plus recombinant protein treatment is reported to investigate what role interleukin-10, an anti-inflammatory cytokine, plays from both host and seeded cells. TEVGs seeded with BM-MNCs from wild-type and IL-10 KO mice, plus unseeded grafts, are implanted into wild-type and IL-10 KO mice. Wild-type mice with unseeded grafts also receive recombinant IL-10. Serial ultrasound evaluates occlusion and TEVGs are harvested at 14 d for immunohistochemical analysis. TEVGs in IL-10 KO mice have significantly higher occlusion incidence compared to wild-type mice attributed to acute (<3 d) thrombosis. Cell seeding rescues TEVGs in IL-10 KO mice comparable to wild-type patency. IL-10 from the host and seeded cells do not significantly influence graft inflammation and macrophage phenotype, yet IL-10 treatment shows interesting biologic effects including decreasing cell proliferation and increasing M2 macrophage polarization. IL-10 from the host is critical for preventing TEVG thrombosis and seeded BM-MNCs exert a significant anti-thrombotic effect in IL-10 KO mice.


Assuntos
Prótese Vascular , Trombose , Animais , Interleucina-10/genética , Camundongos , Trombose/prevenção & controle , Engenharia Tecidual
5.
Sci Transl Med ; 12(537)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238576

RESUMO

We developed a tissue-engineered vascular graft (TEVG) for use in children and present results of a U.S. Food and Drug Administration (FDA)-approved clinical trial evaluating this graft in patients with single-ventricle cardiac anomalies. The TEVG was used as a Fontan conduit to connect the inferior vena cava and pulmonary artery, but a high incidence of graft narrowing manifested within the first 6 months, which was treated successfully with angioplasty. To elucidate mechanisms underlying this early stenosis, we used a data-informed, computational model to perform in silico parametric studies of TEVG development. The simulations predicted early stenosis as observed in our clinical trial but suggested further that such narrowing could reverse spontaneously through an inflammation-driven, mechano-mediated mechanism. We tested this unexpected, model-generated hypothesis by implanting TEVGs in an ovine inferior vena cava interposition graft model, which confirmed the prediction that TEVG stenosis resolved spontaneously and was typically well tolerated. These findings have important implications for our translational research because they suggest that angioplasty may be safely avoided in patients with asymptomatic early stenosis, although there will remain a need for appropriate medical monitoring. The simulations further predicted that the degree of reversible narrowing can be mitigated by altering the scaffold design to attenuate early inflammation and increase mechano-sensing by the synthetic cells, thus suggesting a new paradigm for optimizing next-generation TEVGs. We submit that there is considerable translational advantage to combined computational-experimental studies when designing cutting-edge technologies and their clinical management.


Assuntos
Prótese Vascular , Constrição Patológica , Engenharia Tecidual , Animais , Criança , Constrição Patológica/terapia , Humanos , Ovinos , Estados Unidos
6.
J Tissue Eng Regen Med ; 14(2): 203-214, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31756767

RESUMO

Nanofiber vascular grafts have been shown to create neovessels made of autologous tissue, by in vivo scaffold biodegradation over time. However, many studies on graft materials and biodegradation have been conducted in vitro or in small animal models, instead of large animal models, which demonstrate different degradation profiles. In this study, we compared the degradation profiles of nanofiber vascular grafts in a rat model and a sheep model, while controlling for the type of graft material, the duration of implantation, fabrication method, type of circulation (arterial/venous), and type of surgery (interposition graft). We found that there was significantly less remaining scaffold (i.e., faster degradation) in nanofiber vascular grafts implanted in the sheep model compared with the rat model, in both the arterial and the venous circulations, at 6 months postimplantation. In addition, there was more extracellular matrix deposition, more elastin formation, more mature collagen, and no calcification in the sheep model compared with the rat model. In conclusion, studies comparing degradation of vascular grafts in large and small animal models remain limited. For clinical translation of nanofiber vascular grafts, it is important to understand these differences.


Assuntos
Nanofibras/química , Nanotecnologia/métodos , Alicerces Teciduais , Enxerto Vascular , Animais , Bioprótese , Prótese Vascular , Modelos Animais de Doenças , Cães , Técnicas In Vitro , Camundongos , Modelos Animais , Poliésteres , Coelhos , Ratos , Estudos Retrospectivos , Ovinos , Resistência à Tração , Engenharia Tecidual/métodos
7.
Acta Biomater ; 94: 183-194, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31200116

RESUMO

Electrospinning is commonly used to generate polymeric scaffolds for tissue engineering. Using this approach, we developed a small-diameter tissue engineered vascular graft (TEVG) composed of poly-ε-caprolactone-co-l-lactic acid (PCLA) fibers and longitudinally assessed its performance within both the venous and arterial circulations of immunodeficient (SCID/bg) mice. Based on in vitro analysis demonstrating complete loss of graft strength by 12 weeks, we evaluated neovessel formation in vivo over 6-, 12- and 24-week periods. Mid-term observations indicated physiologic graft function, characterized by 100% patency and luminal matching with adjoining native vessel in both the venous and arterial circulations. An active and robust remodeling process was characterized by a confluent endothelial cell monolayer, macrophage infiltrate, and extracellular matrix deposition and remodeling. Long-term follow-up of venous TEVGs at 24 weeks revealed viable neovessel formation beyond graft degradation when implanted in this high flow, low-pressure environment. Arterial TEVGs experienced catastrophic graft failure due to aneurysmal dilatation and rupture after 14 weeks. Scaffold parameters such as porosity, fiber diameter, and degradation rate informed a previously described computational model of vascular growth and remodeling, and simulations predicted the gross differential performance of the venous and arterial TEVGs over the 24-week time course. Taken together, these results highlight the requirement for in vivo implantation studies to extend past the critical time period of polymer degradation, the importance of differential neotissue deposition relative to the mechanical (pressure) environment, and further support the utility of predictive modeling in the design, use, and evaluation of TEVGs in vivo. STATEMENT OF SIGNIFICANCE: Herein, we apply a biodegradable electrospun vascular graft to the arterial and venous circulations of the mouse and follow recipients beyond the point of polymer degradation. While venous implants formed viable neovessels, arterial grafts experienced catastrophic rupture due to aneurysmal dilation. We then inform a previously developed computational model of tissue engineered vascular graft growth and remodeling with parameters specific to the electrospun scaffolds utilized in this study. Remarkably, model simulations predict the differential performance of the venous and arterial constructs over 24 weeks. We conclude that computational simulations should inform the rational selection of scaffold parameters to fabricate tissue engineered vascular grafts that must be followed in vivo over time courses extending beyond polymer degradation.


Assuntos
Artérias/fisiologia , Prótese Vascular , Engenharia Tecidual/métodos , Veias/fisiologia , Implantes Absorvíveis , Aneurisma/etiologia , Animais , Materiais Biocompatíveis/química , Simulação por Computador , Feminino , Camundongos , Camundongos SCID , Microscopia Eletrônica de Varredura , Reprodutibilidade dos Testes , Ruptura
8.
Regen Med ; 14(5): 389-408, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31180275

RESUMO

Aim: To characterize early events in neotissue formation during the first 2 weeks after vascular scaffold implantation. Materials & methods: Biodegradable polymeric scaffolds were implanted as abdominal inferior vena cava interposition grafts in wild-type mice. Results: All scaffolds explanted at day 1 contained a platelet-rich mural thrombus. Within the first few days, the majority of cell infiltration appeared to be from myeloid cells at the peritoneal surface with modest infiltration along the lumen. Host reaction to the graft was distinct between the scaffold and mural thrombus; the scaffold stimulated an escalating foreign body reaction, whereas the thrombus was quickly remodeled into collagen-rich neotissue. Conclusion: Mural thrombi remodel into neotissue that persistently occludes the lumen of vascular grafts.


Assuntos
Implantes Absorvíveis , Bioprótese , Prótese Vascular , Neointima , Animais , Feminino , Camundongos , Neointima/metabolismo , Neointima/patologia , Ovinos , Fatores de Tempo
9.
Otolaryngol Head Neck Surg ; 161(3): 458-467, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31035858

RESUMO

OBJECTIVES: Humans receiving tissue-engineered tracheal grafts have experienced poor outcomes ultimately resulting in death or the need for graft explantation. We assessed the performance of the synthetic scaffolds used in humans with an ovine model of orthotopic tracheal replacement, applying standard postsurgical surveillance and interventions to define the factors that contributed to the complications seen at the bedside. STUDY DESIGN: Large animal model. SETTING: Pediatric academic research institute. SUBJECTS AND METHODS: Human scaffolds were manufactured with an electrospun blend of polyethylene terephthalate and polyurethane reinforced with polycarbonate rings. They were seeded with autologous bone marrow-derived mononuclear cells and implanted in sheep. Animals were evaluated with routine bronchoscopy and fluoroscopy. Endoscopic dilation and stenting were performed to manage graft stenosis for up to a 4-month time point. Grafts and adjacent native airway were sectioned and evaluated with histology and immunohistochemistry. RESULTS: All animals had signs of graft stenosis. Three of 5 animals (60%) designated for long-term surveillance survived until the 4-month time point. Graft dilation and stent placement resolved respiratory symptoms and prolonged survival. Necropsy demonstrated evidence of infection and graft encapsulation. Granulation tissue with signs of neovascularization was seen at the anastomoses, but epithelialization was never observed. Acute and chronic inflammation of the native airway epithelium was observed at all time points. Architectural changes of the scaffold included posterior wall infolding and scaffold delamination. CONCLUSIONS: In our ovine model, clinically applied synthetic tissue-engineered tracheas demonstrated infectious, inflammatory, and mechanical failures with a lack of epithelialization and neovascularization.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Traqueia/cirurgia , Animais , Humanos , Polietilenotereftalatos , Poliuretanos , Complicações Pós-Operatórias/epidemiologia , Desenho de Prótese , Ovinos , Engenharia Tecidual/métodos , Resultado do Tratamento
10.
Ann Otol Rhinol Laryngol ; 128(5): 391-400, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30700095

RESUMO

OBJECTIVES: The clinical experience with tissue-engineered tracheal grafts (TETGs) has been fraught with graft stenosis and delayed epithelialization. A mouse model of orthotopic replacement that recapitulates the clinical findings would facilitate the study of the cellular and molecular mechanisms underlying graft stenosis. METHODS: Electrospun nanofiber tracheal scaffolds were created using nonresorbable (polyethylene terephthalate + polyurethane) and co-electrospun resorbable (polylactide-co-caprolactone/polyglycolic acid) polymers (n = 10/group). Biomechanical testing was performed to compare load displacement of nanofiber scaffolds to native mouse tracheas. Mice underwent orthotopic tracheal replacement with syngeneic grafts (n = 5) and nonresorbable (n = 10) and resorbable (n = 10) scaffolds. Tissue at the anastomosis was evaluated using hematoxylin and eosin (H&E), K5+ basal cells were evaluated with the help of immunofluorescence testing, and cellular infiltration of the scaffold was quantified. Micro computed tomography was performed to assess graft patency and correlate radiographic and histologic findings with respiratory symptoms. RESULTS: Synthetic scaffolds were supraphysiologic in compression tests compared to native mouse trachea ( P < .0001). Nonresorbable scaffolds were stiffer than resorbable scaffolds ( P = .0004). Eighty percent of syngeneic recipients survived to the study endpoint of 60 days postoperatively. Mean survival with nonresorbable scaffolds was 11.40 ± 7.31 days and 6.70 ± 3.95 days with resorbable scaffolds ( P = .095). Stenosis manifested with tissue overgrowth in nonresorbable scaffolds and malacia in resorbable scaffolds. Quantification of scaffold cellular infiltration correlated with length of survival in resorbable scaffolds (R2 = 0.95, P = .0051). Micro computed tomography demonstrated the development of graft stenosis at the distal anastomosis on day 5 and progressed until euthanasia was performed on day 11. CONCLUSION: Graft stenosis seen in orthotopic tracheal replacement with synthetic tracheal scaffolds can be modeled in mice. The wide array of lineage tracing and transgenic mouse models available will permit future investigation of the cellular and molecular mechanisms underlying TETG stenosis.


Assuntos
Nanofibras , Alicerces Teciduais , Traqueia/cirurgia , Implantes Absorvíveis , Anastomose Cirúrgica , Animais , Fenômenos Biomecânicos , Caproatos , Constrição Patológica/patologia , Lactonas , Camundongos Endogâmicos C57BL , Modelos Animais , Poliésteres , Polietilenotereftalatos , Ácido Poliglicólico , Poliuretanos , Microtomografia por Raio-X
11.
Int J Pediatr Otorhinolaryngol ; 116: 65-69, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30554710

RESUMO

BACKGROUND: Endoscopic airway measurement (EAM) combines optical endoscopic instruments with open source image processing to accurately obtain airway dimensions. Preclinical models have demonstrated EAM as an accurate technique of airway measurement with the added advantage of characterizing multilevel stenosis, non-circular lesions, and distal obstruction. The aim of this prospective clinical study was to compare EAM to airway measurements obtained from endotracheal tube approximation (ETTA) during pediatric aerodigestive evaluation and to evaluate reproducibility of EAM across practitioners. METHODS: Thirty-seven pediatric patients undergoing routine microlaryngoscopy and bronchoscopy at a single tertiary care children's hospital were prospectively recruited. Patients undergoing emergent procedures were excluded. Two blinded reviewers performed airway measurements using ImageJ (NIH) as previously described and average values were compared to ETTA measurements. Additional EAMs were obtained from an ex vivo airway model by 28 separate clinicians and were analyzed by the same reviewers to evaluate reproducibility. RESULTS: EAM and ETTA measurements were themselves significantly different (p = 0.0003); however, the average absolute difference between the two methods was small (Mean: 0.5 mm, 95%CI: -2.6-1.6 mm). There were notable differences between raters such that estimates of raters with more experience were more similar to ETTA. Despite observed differences between EAM and ETTA, endoscopic airway measurement was highly correlated with ETTA (p = 0.0002, Spearman r = 0.4185), and strong agreement was observed (Bias: -0.4974 ±â€¯1.083 mm, 95% LOA: -2.62-1.625 mm). CONCLUSION: Clinical use of EAM is a valid and precise approach for quantification of airway luminal dimensions. This method may provide advantages over traditional ETTAs for evaluation of asymmetric airway morphology in the pediatric population.


Assuntos
Broncoscopia/métodos , Intubação Intratraqueal/métodos , Laringoscopia/métodos , Sistema Respiratório/cirurgia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
12.
Tissue Eng Part C Methods ; 24(8): 465-473, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29978768

RESUMO

OBJECTIVES: Tissue-engineered vascular grafts (TEVGs) have demonstrated potential for treating congenital heart disease (CHD); however, quantitative imaging for tracking functional and structural remodeling of TEVGs has not been applied. Therefore, we evaluated the potential of magnetic resonance (MR) imaging for assessing TEVG wall shear stress (WSS) and wall thickness in a large animal model. METHODS: Cell-seeded (n = 3) or unseeded (n = 3) TEVGs were implanted as inferior vena cava interposition grafts in juvenile lambs. Six months following implantation, two-dimensional phase-contrast MR imaging was performed at 3 slice locations (proximal, middle, and distal) to assess normalized WSS (i.e., WSS-to-cross sectional area). T2-weighted MR imaging was performed to assess TEVG wall thickness. Histology was qualitatively assessed, whereas immunohistochemistry was semiquantitatively assessed for smooth muscle cells (αSMA), macrophage lineage cells (CD11b), and matrix metalloproteinase activity (MMP-2 and MMP-9). Picrosirius Red staining was performed to quantify collagen content. RESULTS: TEVG wall thickness was significantly higher for proximal, middle, and distal slices in unseeded versus cell-seeded grafts. Significantly higher WSS values existed for proximal versus distal slice locations for cell-seeded TEVGs, whereas no differences in WSS existed between slices for unseeded TEVGs. Additionally, no differences in WSS existed between cell-seeded and unseeded groups. Both groups demonstrated elastin formation, without vascular calcification. Unseeded TEVGs possessed greater content of smooth muscle cells when compared with cell-seeded TEVGs. No differences in macrophage, MMP activity, or collagen content existed between groups. CONCLUSION: MR imaging allows for in vivo assessment of functional and anatomical characteristics of TEVGs and may provide a nonionizing approach that is clinically translatable to children undergoing treatment for CHD.


Assuntos
Imageamento por Ressonância Magnética , Estresse Mecânico , Engenharia Tecidual/métodos , Enxerto Vascular , Animais , Colágeno/metabolismo , Ovinos , Alicerces Teciduais/química
13.
Tissue Eng Part A ; 24(1-2): 135-144, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28486019

RESUMO

OBJECTIVE: Electrospinning is a promising technology that provides biodegradable nanofiber scaffolds for cardiovascular tissue engineering. However, success with these materials has been limited, and the optimal combination of scaffold parameters for a tissue-engineered vascular graft (TEVG) remains elusive. The purpose of the present study is to evaluate the effect of bone marrow mononuclear cell (BM-MNC) seeding in electrospun scaffolds to support the rational design of optimized TEVGs. METHODS: Nanofiber scaffolds were fabricated from co-electrospinning a solution of polyglycolic acid and a solution of poly(ι-lactide-co-ɛ-caprolactone) and characterized with scanning electron microscopy. Platelet activation and cell seeding efficiency were assessed by ATP secretion and DNA assays, respectively. Cell-free and BM-MNC seeded scaffolds were implanted in C57BL/6 mice (n = 15/group) as infrarenal inferior vena cava (IVC) interposition conduits. Animals were followed with serial ultrasonography for 6 months, after which grafts were harvested for evaluation of patency and neotissue formation by histology and immunohistochemistry (n = 10/group) and PCR (n = 5/group) analyses. RESULTS: BM-MNC seeding of electrospun scaffolds prevented stenosis compared with unseeded scaffolds (seeded: 9/10 patent vs. unseeded: 1/10 patent, p = 0.0003). Seeded vascular grafts demonstrated concentric laminated smooth muscle cells, a confluent endothelial monolayer, and a collagen-rich extracellular matrix. Platelet-derived ATP, a marker of platelet activation, was significantly reduced after incubating thrombin-activated platelets in the presence of seeded scaffolds compared with unseeded scaffolds (p < 0.0001). In addition, reduced macrophage infiltration and a higher M2 macrophage percentage were observed in seeded grafts. CONCLUSIONS: The beneficial effects of BM-MNC seeding apply to electrospun TEVG scaffolds by attenuating stenosis through the regulation of platelet activation and inflammatory macrophage function, leading to well-organized neotissue formation. BM-MNC seeding is a valuable technique that can be used in the rational design of optimal TEVG scaffolds.


Assuntos
Células da Medula Óssea/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Prótese Vascular , Células Cultivadas , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL
14.
Int J Pediatr Otorhinolaryngol ; 104: 155-160, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29287858

RESUMO

OBJECTIVE: Recent efforts to tissue engineer long-segment tracheal grafts have been complicated by stenosis and malacia. It has been proposed that both the mechanical characteristics and cell seeding capacity of TETG scaffolds are integral to graft performance. Our aim was to design a tracheal construct that approximates the biomechanical properties of native sheep trachea and optimizes seeding with bone marrow derived mononuclear cells prior to preclinical evaluation in an ovine model. METHODS: A solution of 8% polyethylene terephthalate (PET) and 3% polyurethane (PU) was prepared at a ratio of either 8:2 or 2:8 and electrospun onto a custom stainless steel mandrel designed to match the dimensional measurements of the juvenile sheep trachea. 3D-printed porous or solid polycarbonate C-shaped rings were embedded within the scaffolds during electrospinning. The scaffolds underwent compression testing in the anterior-posterior and lateral-medial axes and the biomechanical profiles compared to that of a juvenile ovine trachea. The most biomimetic constructs then underwent vacuum seeding with ovine bone marrow derived mononuclear cells. Fluorometric DNA assay was used to quantify scaffold seeding. RESULTS: Both porous and solid rings approximated the biomechanics of the native ovine trachea, but the porous rings were most biomimetic. The load-displacement curve of scaffolds fabricated from a ratio of 2:8 PET:PU most closely mimicked that of native trachea in the anterior-posterior and medial-lateral axes. Solid C-ringed scaffolds had a greater cell seeding efficiency when compared to porous ringed scaffolds (Solid: 19 × 104 vs. Porous: 9.6 × 104 cells/mm3, p = 0.0098). CONCLUSION: A long segment tracheal graft composed of 2:8 PET:PU with solid C-rings approximates the biomechanics of the native ovine trachea and demonstrates superior cell seeding capacity of the two prototypes tested. Further preclinical studies using this graft design in vivo would inform the rational design of an optimal TETG scaffold.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais , Traqueia , Animais , Fenômenos Biomecânicos , Medula Óssea , Microscopia Eletrônica , Poliuretanos , Impressão Tridimensional , Ovinos , Microtomografia por Raio-X
15.
Laryngoscope ; 127(10): 2219-2224, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28349659

RESUMO

OBJECTIVE: To evaluate the safety and efficacy of bronchoscopic interventions in the management of tissue-engineered tracheal graft (TETG) stenosis. STUDY DESIGN: Animal research study. METHODS: TETGs were constructed with seeded autologous bone marrow-derived mononuclear cells on a bioartificial graft. Eight sheep underwent tracheal resection and orthotopic implantation of this construct. Animals were monitored by bronchoscopy and fluoroscopy at 3 weeks, 6 weeks, 3 months, and 4 months. Bronchoscopic interventions, including dilation and stenting, were performed to manage graft stenosis. Postdilation measurements were obtained endoscopically and fluoroscopically. RESULTS: Seven dilations were performed in six animals. At the point of maximal stenosis, the lumen measured 44.6 ± 8.4 mm2 predilation and 50.7 ± 14.1 postdilation by bronchoscopy (P = 0.3517). By fluoroscopic imaging, the airway was 55.9 ± 12.9 mm2 predilation and 65.9 ± 22.4 mm2 postdilation (P = 0.1303). Stents were placed 17 times in six animals. Pre- and poststenting lumen sizes were 62.8 ± 38.8 mm2 and 80.1 ± 54.5 mm2 by bronchoscopy (P = 0.6169) and 77.1 ± 38.9 mm2 and 104 ± 60.7 mm2 by fluoroscopy (P = 0.0825). Mortality after intervention was 67% with dilation and 0% with stenting (P = 0.0004). The average days between bronchoscopy were 8 ± 2 for the dilation group and 26 ± 17 in the stenting group (P = 0.05). One hundred percent of dilations and 29% of stent placements required urgent follow-up bronchoscopy (P = 0.05). CONCLUSION: Dilation has limited efficacy for managing TETG stenosis, whereas stenting has a more lasting clinical effect. LEVEL OF EVIDENCE: NA. Laryngoscope, 127:2219-2224, 2017.


Assuntos
Bioprótese/efeitos adversos , Broncoscopia/métodos , Complicações Pós-Operatórias/cirurgia , Traqueia/transplante , Estenose Traqueal/cirurgia , Animais , Dilatação/métodos , Fluoroscopia/métodos , Complicações Pós-Operatórias/etiologia , Desenho de Prótese/métodos , Ovinos , Stents , Engenharia Tecidual , Estenose Traqueal/etiologia , Resultado do Tratamento
16.
J Cardiovasc Transl Res ; 10(2): 128-138, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28097523

RESUMO

Patients who undergo implantation of a tissue-engineered vascular graft (TEVG) for congenital cardiac anomalies are monitored with echocardiography, followed by magnetic resonance imaging or angiography when indicated. While these methods provide data regarding the lumen, minimal information regarding neotissue formation is obtained. Intravascular ultrasound (IVUS) has previously been used in a variety of conditions to evaluate the vessel wall. The purpose of this study was to evaluate the utility of IVUS for evaluation of TEVGs in our ovine model. Eight sheep underwent implantation of TEVGs either unseeded or seeded with bone marrow-derived mononuclear cells. Angiography, IVUS, and histology were directly compared. Endothelium, tunica media, and graft were identifiable on IVUS and histology at multiple time points. There was strong agreement between IVUS and angiography for evaluation of luminal diameter. IVUS offers a valuable tool to evaluate the changes within TEVGs, and clinical translation of this application is warranted.


Assuntos
Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Transplante de Medula Óssea , Engenharia Tecidual/métodos , Alicerces Teciduais , Ultrassonografia de Intervenção , Veia Cava Inferior/cirurgia , Animais , Implante de Prótese Vascular/efeitos adversos , Células Cultivadas , Modelos Animais , Flebografia , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/patologia , Desenho de Prótese , Carneiro Doméstico , Fatores de Tempo , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/patologia
17.
J Thorac Cardiovasc Surg ; 153(4): 924-932, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27938900

RESUMO

BACKGROUND: Tissue-engineered vascular grafts (TEVGs) offer potential to overcome limitations of current approaches for reconstruction in congenital heart disease by providing biodegradable scaffolds on which autologous cells proliferate and provide physiologic functionality. However, current TEVGs do not address the diverse anatomic requirements of individual patients. This study explores the feasibility of creating patient-specific TEVGs by combining 3-dimensional (3D) printing and electrospinning technology. METHODS: An electrospinning mandrel was 3D-printed after computer-aided design based on preoperative imaging of the ovine thoracic inferior vena cava (IVC). TEVG scaffolds were then electrospun around the 3D-printed mandrel. Six patient-specific TEVGs were implanted as cell-free IVC interposition conduits in a sheep model and explanted after 6 months for histologic, biochemical, and biomechanical evaluation. RESULTS: All sheep survived without complications, and all grafts were patent without aneurysm formation or ectopic calcification. Serial angiography revealed significant decreases in TEVG pressure gradients between 3 and 6 months as the grafts remodeled. At explant, the nanofiber scaffold was nearly completely resorbed and the TEVG showed similar mechanical properties to that of native IVC. Histological analysis demonstrated an organized smooth muscle cell layer, extracellular matrix deposition, and endothelialization. No significant difference in elastin and collagen content between the TEVG and native IVC was identified. There was a significant positive correlation between wall thickness and CD68+ macrophage infiltration into the TEVG. CONCLUSIONS: Creation of patient-specific nanofiber TEVGs by combining electrospinning and 3D printing is a feasible technology as future clinical option. Further preclinical studies involving more complex anatomical shapes are warranted.


Assuntos
Implante de Prótese Vascular/instrumentação , Prótese Vascular , Desenho Assistido por Computador , Nanoestruturas , Nanotecnologia/métodos , Impressão Tridimensional , Desenho de Prótese , Engenharia Tecidual/métodos , Veia Cava Inferior/cirurgia , Animais , Angiografia por Tomografia Computadorizada , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Modelos Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima , Flebografia/métodos , Carneiro Doméstico , Fatores de Tempo , Grau de Desobstrução Vascular , Remodelação Vascular , Veia Cava Inferior/metabolismo , Veia Cava Inferior/patologia , Veia Cava Inferior/fisiopatologia , Pressão Venosa
18.
Int J Pediatr Otorhinolaryngol ; 91: 108-112, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27863622

RESUMO

OBJECTIVES: With the evolution of medical and surgical management for pediatric airway disorders, the development of easily translated techniques of measuring airway dimensions can improve the quantification of outcomes of these interventions. We have developed a technique that improves the ability to characterize endoscopic airway dimensions using common bronchoscopic equipment and an open-source image-processing platform. METHODS: We validated our technique of Endoscopic Airway Measurement (EAM) using optical instruments in simulation tracheas. We then evaluated EAM in a large animal model (Ovis aries, n = 5), comparing tracheal dimensions obtained with EAM to measurements obtained via 3-D fluoroscopic reconstruction. The animal then underwent resection of the measured segment, and direct measurement of this segment was performed and compared to radiographic measurements and those obtained using EAM. RESULTS: The simulation tracheas had a direct measurement of 13.6, 18.5, and 24.2 mm in diameter. The mean difference of diameter in simulation tracheas between direct measurements and measurements obtained using EAM was 0.70 ± 0.57 mm. The excised ovine tracheas had an average diameter of 18.54 ± 0.68 mm. The percent difference in diameter obtained from EAM and from 3-D fluoroscopic reconstruction when compared to measurement of the excised tracheal segment was 4.98 ± 2.43% and 10.74 ± 4.07% respectively. Comparison of these three measurements (EAM, measurement of resected trachea, 3-D fluoroscopic reconstruction) with repeated measures ANOVA demonstrated no statistical significance. CONCLUSIONS: Endoscopic airway measurement (EAM) provides equivalent measurements of the airway with the improved versatility of measuring non-circular and multi-level dimensions. Using optical bronchoscopic instruments and open-source image-processing software, our data supports preclinical and clinical translation of an accessible technique to provide objective quantification of airway diameter.


Assuntos
Processamento de Imagem Assistida por Computador , Traqueia/anatomia & histologia , Traqueia/diagnóstico por imagem , Animais , Endoscopia , Fluoroscopia , Humanos , Imageamento Tridimensional , Modelos Animais , Modelos Biológicos , Ovinos
19.
PLoS One ; 11(7): e0158555, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467821

RESUMO

Tissue engineered vascular grafts (TEVGs) have the potential to overcome the issues faced by existing small diameter prosthetic grafts by providing a biodegradable scaffold where the patient's own cells can engraft and form functional neotissue. However, applying classical approaches to create arterial TEVGs using slow degrading materials with supraphysiological mechanical properties, typically results in limited host cell infiltration, poor remodeling, stenosis, and calcification. The purpose of this study is to evaluate the feasibility of novel small diameter arterial TEVGs created using fast degrading material. A 1.0mm and 5.0mm diameter TEVGs were fabricated with electrospun polycaprolactone (PCL) and chitosan (CS) blend nanofibers. The 1.0mm TEVGs were implanted in mice (n = 3) as an unseeded infrarenal abdominal aorta interposition conduit., The 5.0mm TEVGs were implanted in sheep (n = 6) as an unseeded carotid artery (CA) interposition conduit. Mice were followed with ultrasound and sacrificed at 6 months. All 1.0mm TEVGs remained patent without evidence of thrombosis or aneurysm formation. Based on small animal outcomes, sheep were followed with ultrasound and sacrificed at 6 months for histological and mechanical analysis. There was no aneurysm formation or calcification in the TEVGs. 4 out of 6 grafts (67%) were patent. After 6 months in vivo, 9.1 ± 5.4% remained of the original scaffold. Histological analysis of patent grafts demonstrated deposition of extracellular matrix constituents including elastin and collagen production, as well as endothelialization and organized contractile smooth muscle cells, similar to that of native CA. The mechanical properties of TEVGs were comparable to native CA. There was a significant positive correlation between TEVG wall thickness and CD68+ macrophage infiltration into the scaffold (R2 = 0.95, p = 0.001). The fast degradation of CS in our novel TEVG promoted excellent cellular infiltration and neotissue formation without calcification or aneurysm. Modulating host macrophage infiltration into the scaffold is a key to reducing excessive neotissue formation and stenosis.


Assuntos
Prótese Vascular , Quitosana/química , Nanofibras/química , Poliésteres/química , Engenharia Tecidual , Animais , Sistema Livre de Células , Matriz Extracelular , Camundongos , Microscopia Eletrônica de Varredura , Modelos Animais , Músculo Liso Vascular/citologia , Ovinos
20.
FASEB J ; 30(7): 2627-36, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059717

RESUMO

Stenosis is a critical problem in the long-term efficacy of tissue-engineered vascular grafts (TEVGs). We previously showed that host monocyte infiltration and activation within the graft drives stenosis and that TGF-ß receptor 1 (TGF-ßR1) inhibition can prevent it, but the latter effect was attributed primarily to inhibition of mesenchymal cell expansion. In this study, we assessed the effects of TGF-ßR1 inhibition on the host monocytes. Biodegradable TEVGs were implanted as inferior vena cava interposition conduits in 2 groups of C57BL/6 mice (n = 25/group): unseeded grafts and unseeded grafts with TGF-ßR1 inhibitor systemic treatment for the first 2 wk. The TGF-ßR1 inhibitor treatment effectively improved TEVG patency at 6 mo compared to the untreated control group (91.7 vs. 48%, P < 0.001), which is associated with a reduction in classic activation of mononuclear phagocytes. Consistent with these findings, the addition of rTGF-ß to LPS/IFN-γ-stimulated monocytes enhanced secretion of inflammatory cytokines TNF-α, IL-12, and IL-6; this effect was blocked by TGF-ßR1 inhibition (P < 0.0001). These findings suggest that the TGF-ß signaling pathway contributes to TEVG stenosis by inducing classic activation of host monocytes. Furthermore, blocking monocyte activation by TGF-ßR1 inhibition provides a viable strategy for preventing TEVG stenosis while maintaining neotissue formation.-Lee, Y.-U., de Dios Ruiz-Rosado, J., Mahler, N., Best, C. A., Tara, S., Yi, T., Shoji, T., Sugiura, T., Lee, A. Y., Robledo-Avila, F., Hibino, N., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. TGF-ß receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation.


Assuntos
Leucócitos Mononucleares/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Prótese Vascular , Constrição Patológica , Citocinas/genética , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Fatores de Crescimento Transformadores beta/genética , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA